Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans

Abstract

The GAL4–UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4–UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 °C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optimization of activation domain and UAS copy number.
Figure 2: Designing a temperature-robust GAL4 driver via evolutionary analysis.
Figure 3: Functional studies with the cGAL system.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Duffy, J.B. Genesis 34, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Traven, A., Jelicic, B. & Sopta, M. EMBO Rep. 7, 496–499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Triezenberg, S.J., Kingsbury, R.C. & McKnight, S.L. Genes Dev. 2, 718–729 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Pfeiffer, B.D. et al. Genetics 186, 735–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beerli, R.R., Segal, D.J., Dreier, B. & Barbas, C.F. III. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brand, A.H., Manoukian, A.S. & Perrimon, N. Methods Cell Biol. 44, 635–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Salvadó, Z. et al. Appl. Environ. Microbiol. 77, 2292–2302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hittinger, C.T. et al. Nature 464, 54–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marmorstein, R., Carey, M., Ptashne, M. & Harrison, S.C. Nature 356, 408–414 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Thomas, J.H. Genetics 124, 855–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. et al. Curr. Biol. 23, 746–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahoney, T.R. et al. Proc. Natl. Acad. Sci. USA 105, 16350–16355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, T. & Luo, L. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, J. & Ptashne, M. Cell 50, 137–142 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, X., Potter, C.J., Luo, L. & Shen, K. Nat. Methods 9, 391–395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. del Valle Rodríguez, A., Didiano, D. & Desplan, C. Nat. Methods 9, 47–55 (2011).

    Article  PubMed  Google Scholar 

  18. Hoier, E.F., Mohler, W.A., Kim, S.K. & Hajnal, A. Genes Dev. 14, 874–886 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Voutev, R. & Hubbard, E.J.A.A. Genetics 180, 103–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis, M.W., Morton, J.J., Carroll, D. & Jorgensen, E.M. PLoS Genet. 4, e1000028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Webster, N., Jin, J.R., Green, S., Hollis, M. & Chambon, P. Cell 52, 169–178 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Zheng, Y., Brockie, P.J., Mellem, J.E., Madsen, D.M. & Maricq, A.V. Neuron 24, 347–361 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, T.-W. et al. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pokala, N., Liu, Q., Gordus, A. & Bargmann, C.I. Proc. Natl. Acad. Sci. USA 111, 2770–2775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sweeney, S.T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C.J. Neuron 14, 341–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Fire (Stanford University) for sharing unpublished results and to C.T. Hittinger (University of Wisconsin-Madison), D. Sieburth (University of Southern California), E.M. Jorgensen (University of Utah), C. Bargmann (Rockefeller University) and A. Fire (Stanford University) for reagents. We thank H. Korswagen (Hubrecht Institute) for thoughtful discussion. N.P. thanks C. Bargmann for her support. We thank M. Bao, Y.M. Kim, D. Leighton, J. DeModena and G. Medina for technical assistance; and WormBase for technical support. We also thank M. Kato, H. Schwartz, D. Angeles-Albores and other members of the Sternberg lab for editorial comments on the manuscript. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (grant P40 OD010440). Some imaging was performed at the Caltech Biological Imaging Facility with the support of the Caltech Beckman Institute and the Arnold and Mabel Beckman Foundation. H.W. is supported by the Della Martin Fellowship. J.L. was supported by NIH grant T32GM007616. This work is supported by the Howard Hughes Medical Institute, with which P.W.S. is an investigator.

Author information

Authors and Affiliations

Authors

Contributions

H.W., J.L. and P.W.S. conceived the project. H.W. and J.L. performed the experiments, analyzed the data and wrote the paper. S.G. helped with molecular cloning and strain handling. E.M.S. devised the idea of trying Gal4p from yeast species with lower growth temperatures. C.M.C. and N.P. contributed reagents.

Corresponding author

Correspondence to Paul W Sternberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Neither driver nor effector alone displays expression of GFP

Comparison of GFP fluorescence in a driver- only strain (a) or an effector-only strain (b) to their driver + effector combination controls. One-tailed t-test with Welch's correction.

Source data

Supplementary Figure 2 Performance of different DBDs from Gal4 proteins at room temperature

Quantification of GFP fluorescence in the pharynx of transgenic worms with either Pmyo‑2::GAL4SC::VP64 or Pmyo‑2::GAL4SK::VP64 drivers injected into a strain carrying an integrated 15xUAS::gfp transgene (syIs300) at room temperature (22‑23°C). The drivers were both injected at 10 ng/μL. Strains with a direct Pmyo‑2::gfp fusion array at 10 ng/μL was measured for comparison. Two independent lines were imaged for each genotype. n = 20 ‑ 30 for each line. Bars are mean ± SEM. * p<0.05. ns, not significant. One‑way ANOVA with Tukey’s post-test. a.u., artificial units.

Source data

Supplementary Figure 3 Functional verification of integrated effectors

Expression of integrated drivers (left column) or integrated effectors alone (middle column) shows no basal expression. Only the combination (right column) show expression of cytoplasmic or nuclear-localized reporters, or death of appropriate cells. DIC, Differential interference contrast; Green, green filter; Red, red filter. Scale bar is 20 μm.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Notes 1–6. (PDF 2321 kb)

Supplementary Table 1

Integrated cGAL drivers and effectors (XLSX 24 kb)

Supplementary Table 2

Plasmids and oligos used in this study (XLSX 98 kb)

Functional verification of a ChR2 effector with a GABAergic driver

Blue light induces paralysis in transgenic animals carrying a GABAergic driver and a channelrhodopsin (ChR2) effector (MP4 6543 kb)

Negative control of a ChR2 effector without driver

No response to blue light in transgenic animals only carrying a channelrhodopsin (ChR2) effector (MP4 7305 kb)

Functional verification of a GCaMP6s effector with a body wall muscle driver

Calcium imaging in body wall muscles of animals carrying a body wall muscle driver and a GCaMP6s::SL2::mKate2 effector (MP4 2681 kb)

Functional verification of a HisCl1 effector with a body wall muscle driver

Expressing a histamine-gated chloride channel HisCl1 in body wall muscle induces flaccid paralysis on histamine plates. Worms with either the driver or the effector alone fail to respond to histamine (MP4 7339 kb)

Functional verification of a TeTx effector with a GABAergic driver

Expressing a tetanus toxin light chain (TeTx) in GABAergic neurons blocks neurotransmission and leads to the characteristic “shrink” phenotype. Transgenic worms with either the driver or the effector don't display the “shrink” phenotype (MP4 1785 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, J., Gharib, S. et al. cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans. Nat Methods 14, 145–148 (2017). https://doi.org/10.1038/nmeth.4109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing