Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural analysis of strained quantum dots using nuclear magnetic resonance

Abstract

Strained semiconductor nanostructures can be used to make single-photon sources1, detectors2 and photovoltaic devices3, and could potentially be used to create quantum logic devices4,5. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods6,7,8 typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures9,10,11 because of the significant strain-induced quadrupole broadening of the NMR spectra12,13,14. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 105 quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins15,16,17 in the presence of strong quadrupole effects18,19,20,21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical techniques for detection of NMR in single quantum dots.
Figure 2: Comparison of saturation and inverse NMR techniques.
Figure 3: Inverse NMR spectra of strained quantum dots.
Figure 4: High-resolution inverse NMR spectra of CTs.

Similar content being viewed by others

References

  1. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

    Article  CAS  Google Scholar 

  2. Reimer, M. E. et al. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophoton. 5, 053502 (2011).

    Article  Google Scholar 

  3. Tian, B., Kempa, T. J. & Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009).

    Article  CAS  Google Scholar 

  4. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  CAS  Google Scholar 

  5. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  CAS  Google Scholar 

  6. Siverns, P. D. et al. Scanning transmission-electron microscopy study of InAs/GaAs quantum dots. Phys. Rev. B 58, R10127–R10130 (1998).

    Article  CAS  Google Scholar 

  7. Tanaka, I. et al. Imaging and probing electronic properties of self-assembled InAs quantum dots by atomic force microscopy with conductive tip. Appl. Phys. Lett. 74, 844–846 (1999).

    Article  CAS  Google Scholar 

  8. Wu, W., Tucker, J. R., Solomon, G. S . & Harris, J. S. Atom-resolved scanning tunneling microscopy of vertically ordered InAs quantum dots. Appl. Phys. Lett. 71, 1083–1085 (1997).

    Article  CAS  Google Scholar 

  9. Gammon, D. et al. Nuclear spectroscopy in single quantum dots: nanoscopic Raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997).

    Article  Google Scholar 

  10. Makhonin, M. N. et al. Fast control of nuclear spin polarization in an optically pumped single quantum dot. Nature Mater. 10, 844–848 (2011).

    Article  CAS  Google Scholar 

  11. Makhonin, M. N. et al. Optically tunable nuclear magnetic resonance in a single quantum dot. Phys. Rev. B 82, 161309 (2010).

    Article  Google Scholar 

  12. Tang, J. A. et al. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem. Phys. Lett. 466, 227–234 (2008).

    Article  CAS  Google Scholar 

  13. Siegel, R., Nakashima, T. T . & Wasylishen, R. E. Sensitivity enhancement of NMR spectra of half-integer quadrupolar nuclei in the solid state via population transfer. Concepts Magn. Reson. A 26A, 47–61 (2005).

    Article  CAS  Google Scholar 

  14. Bulutay, C. Quadrupolar spectra of nuclear spins in strained InxGa1– xAs quantum dots. Phys. Rev. B 85, 115313 (2012).

    Article  Google Scholar 

  15. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  Google Scholar 

  16. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs. Nature Phys. 7, 109–113 (2011).

    Article  CAS  Google Scholar 

  17. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    Article  CAS  Google Scholar 

  18. Maletinsky, P., Kroner, M. & Imamoglu, A. Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments. Nature Phys. 5, 407–411 (2009).

    Article  CAS  Google Scholar 

  19. Latta, C., Srivastava, A. & Imamoğlu, A. Hyperfine interaction-dominated dynamics of nuclear spins in self-assembled InGaAs quantum dots. Phys. Rev. Lett. 107, 167401 (2011).

    Article  Google Scholar 

  20. Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett. 108, 197403 (2012).

    Article  Google Scholar 

  21. Cherbunin, R. V. et al. Resonant nuclear spin pumping in (In,Ga)As quantum dots. Phys. Rev. B 84, 041304 (2011).

    Article  Google Scholar 

  22. Gammon, D. et al. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 86, 5176–5179 (2001).

    Article  CAS  Google Scholar 

  23. Chekhovich, E. A. et al. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys. Rev. Lett. 104, 066804 (2010).

    Article  CAS  Google Scholar 

  24. Abragam, A. The Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  25. Man, P. P. in Encyclopedia of Nuclear Magnetic Resonance (eds Grant, D. M. & Harris, R. K.) 3838–3848 (Wiley, 1996).

    Google Scholar 

  26. Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969–11981 (1995).

    Article  Google Scholar 

  27. Sundfors, R. K. Experimental gradient-elastic tensors and chemical bonding in IIIV semiconductors. Phys. Rev. B 10, 4244–4252 (1974).

    Article  CAS  Google Scholar 

  28. Mlinar, V. et al. Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: using theory to close the loop. Phys. Rev. B 80, 165425 (2009).

    Article  Google Scholar 

  29. Kikkawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000).

    Article  CAS  Google Scholar 

  30. Kronmüller, S. et al. New type of electron nuclear-spin interaction from resistively detected NMR in the fractional quantum Hall effect regime. Phys. Rev. Lett. 82, 4070–4073 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC Programme grants (EP/G001642/1 and EP/J007544/1), ITN Spin-Optronics and the Royal Society. J.P. was supported by a CONACYT-Mexico doctoral scholarship. The authors thank A.J. Ramsay and D.N. Krizhanovskii for fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

A.B.K. and M.H. developed and grew the samples. A.M.S. and R.B. produced TEM images of quantum dots. J.P. processed the samples. E.A.C. and A.I.T. conceived the experiments. E.A.C. developed new techniques and carried out the experiments. E.A.C., K.V.K., A.D.A. and A.I.T. analysed the data. E.A.C., A.I.T. and M.S.S. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to E. A. Chekhovich or A. I. Tartakovskii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekhovich, E., Kavokin, K., Puebla, J. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech 7, 646–650 (2012). https://doi.org/10.1038/nnano.2012.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing