Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea

Abstract

Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence of a single InAs/GaAs quantum dot in a charge-tunable device.
Figure 2: The two different mechanisms for the Mahan and hybrid excitons.
Figure 3: Using the zero-bandwidth model, the X0 to X transition can be reproduced.

Similar content being viewed by others

References

  1. Landsberg, P. T. A contribution to the theory of soft X-ray emission bands of sodium. Proc. Phys. Soc. A 62, 806–816 (1949).

    Article  ADS  Google Scholar 

  2. Landsberg, P. T. Electron interaction effects on recombination spectra. Phys. Status Solidi 15, 623–626 (1966).

    Article  Google Scholar 

  3. Martin, R. W. & Störmer, H. L. On the low energy tail of the electron–hole drop recombination spectrum. Solid State Commun. 22, 523–526 (1977).

    Article  ADS  Google Scholar 

  4. Skolnick, M. S. et al. Observation of a many-body edge singularity in quantum-well luminescence spectra. Phys. Rev. Lett. 58, 2130–2133 (1987).

    Article  ADS  Google Scholar 

  5. Warburton, R. J. et al. Coulomb interactions in small charge-tunable quantum dots: A simple model. Phys. Rev. B 58, 16221–16231 (1998).

    Article  ADS  Google Scholar 

  6. Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007).

    Article  ADS  Google Scholar 

  7. Finley, J. J. et al. Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot. Phys. Rev. B 63, 161305(R) (2001).

    Article  ADS  Google Scholar 

  8. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

  9. Dalgarno, P. A. et al. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 100, 176801 (2008).

    Article  ADS  Google Scholar 

  10. Mahan, G. D. Excitons in degenerate semiconductors. Phys. Rev. 153, 882–889 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  11. Govorov, A. O., Karrai, K. & Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 67, 241307(R) (2003).

    Article  ADS  Google Scholar 

  12. Govorov, A. O. in Self-Assembled Quantum Dots (ed. Wang, Z. M.) 217–238 (Springer, 2008).

    Book  Google Scholar 

  13. Helmes, R. W., Sindel, M., Borda, L. & von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B 72, 125301 (2005).

    Article  ADS  Google Scholar 

  14. Kikoin, K. & Avishai, Y. Many-particle resonances in excited states of semiconductor quantum dots. Phys. Rev. B 62, 4647–4655 (2000).

    Article  ADS  Google Scholar 

  15. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  ADS  Google Scholar 

  16. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    Article  ADS  Google Scholar 

  17. Makhonin, M. N. et al. Voltage-controlled nuclear polarization switching in a single InxGa1−xAs quantum dot. Phys. Rev. B 79, 125318 (2009).

    Article  ADS  Google Scholar 

  18. Finley, J. J. et al. Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Phys. Rev. B 70, 201308(R) (2004).

    Article  ADS  Google Scholar 

  19. Bardeen, J. Tunneling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961).

    Article  ADS  Google Scholar 

  20. Luyken, R. J. et al. The dynamics of tunneling into self-assembled InAs dots. Appl. Phys. Lett. 74, 2486–2488 (1999).

    Article  ADS  Google Scholar 

  21. Seidl, S. et al. Resonant transmission spectroscopy on the p to p transitions of a charge tunable InGaAs quantum dot. Appl. Phys. Lett. 92, 153103 (2008).

    Article  ADS  Google Scholar 

  22. Kroner, M. et al. The nonlinear Fano effect. Nature 451, 311–314 (2008).

    Article  ADS  Google Scholar 

  23. Anderson, P. W. Localized magnetic states in metal. Phys. Rev. 124, 41–53 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  24. Hopfield, J. J. Infrared divergences, X-ray edges, and all that. Comments Solid State Phys. 2,40–49 (1969).

    Google Scholar 

  25. Türeci, H. E. et al. Shedding light on non-equilibrium dynamics of a spin coupled to fermionic reservoir. Preprint at http://arxiv.org/abs/0907.3854 (2009).

  26. Warburton, R. J. et al. Giant permanent dipole moments of excitons in semiconductor nanostructures. Phys. Rev. B 65, 113303 (2002).

    Article  ADS  Google Scholar 

  27. Mazur, Yu. I. et al. Excitonic transfer in coupled InGaAs/GaAs quantum well to InAs quantum dots. Appl. Phys. Lett. 89, 151914 (2006).

    Article  ADS  Google Scholar 

  28. Fano, U. Effect of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  29. Callaway, J. Quantum Theory of the Solid State (Academic, 1991).

    Google Scholar 

  30. Hewson, A. C. The Kondo Problem To Heavy Fermions (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank P. A. M. Nouwens and E. J. Geluk for their help with the sample processing. They acknowledge the stimulating environment and discussions provided by the ‘van der Waals Borrel’. This work is part of the research programme of NanoNed, which is financially supported by the NWO (The Netherlands). Other financial support comes from VICI grant no. 6631 (The Netherlands), NSF (USA) and BNNT (Ohio University, USA).

Author information

Authors and Affiliations

Authors

Contributions

N.A.J.M.K. and J.v.B. carried out the photoluminescence measurements. J.G.K. carried out the cross-sectional scanning tunnelling microscopy analysis. G.J.H. and R.N. grew the sample. A.O.G. carried out the theoretical calculations. N.A.J.M.K., J.v.B., A.O.G., A.Yu.S. and P.M.K. analysed and interpreted the data.

Corresponding author

Correspondence to A. Yu. Silov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleemans, N., van Bree, J., Govorov, A. et al. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea. Nature Phys 6, 534–538 (2010). https://doi.org/10.1038/nphys1673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1673

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing