Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectric quantum criticality

Abstract

Paramagnets on the border of ferromagnetism at low temperatures are more subtle and complex than anticipated by the conventional theory of quantum critical phenomena. Could quantum criticality theory be more relevant in the corresponding case of quantum paraelectrics on the border of ferroelectricity? To address this question we have investigated the temperature dependence of the dielectric function of the displacive quantum paraelectrics SrTiO3, oxygen-18 substituted SrTiO3 and KTaO3. In all of these materials on the border of ferroelectricity we observe non-classical T2 temperature dependencies of the inverse dielectric function below 50 K, followed by anomalous upturns below a few kelvin extending into the millikelvin range. This non-classical behaviour can be understood quantitatively without adjustable parameters in terms of quantum criticality theory when extended to include the effects of long-range dipolar interactions and the coupling of the electric polarization field with acoustic phonons. The quantum critical regime in displacive ferroelectrics is thus strikingly different from that in the better-known ferromagnetic counterparts and offers unexpected prospects in the field of quantum phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature–magnetic field–density phase diagram on the border of metallic ferromagnetism.
Figure 2: Temperature dependence of the inverse dielectric function 1/ɛ(T) in SrTiO3.
Figure 3: Temperature dependence of the inverse dielectric function 1/ɛ(T) in KTaO3.
Figure 4: Phase diagram for a displacive ferroelectric.
Figure 5: Temperature dependence of the inverse dielectric function 1/ɛ(T) in SrTi(18Ox16O1− x)3.

Similar content being viewed by others

References

  1. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).

    MATH  Google Scholar 

  2. Focus on quantum phase transitions. Nature Phys. 4, 167–204 (2008).

  3. Anderson, P. W. In praise of unstable fixed points: The way things actually work. Physica B 318, 28–32 (2002).

    Article  ADS  Google Scholar 

  4. Fradkin, E. & Kivelson, S. Electron nematic phases proliferate. Science 327, 155–156 (2010).

    Article  ADS  Google Scholar 

  5. Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1183 (2007).

    Article  ADS  Google Scholar 

  6. Rowley, S. E. et al. Novel metallic states at low temperatures. Low Temp. Phys. 37, 2–7 (2011).

    Article  ADS  Google Scholar 

  7. Batista, C. et al. Geometric frustration and dimensional reduction at a quantum critical point. Phys. Rev. Lett. 98, 257201 (2007).

    Article  ADS  Google Scholar 

  8. Jaime, M. et al. Magnetic-field-induced condensation of triplons in Han Purple pigment BaCuSi2O6 . Phys. Rev. Lett. 93, 087203 (2004).

    Article  ADS  Google Scholar 

  9. Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nature Phys. 4, 198–204 (2008).

    Article  ADS  Google Scholar 

  10. Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4 . Science 336, 1416–1419 (2012).

    Article  ADS  Google Scholar 

  11. Muller, K. A. & Burkard, H. SrTiO3: Intrinsic quantum para-electric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  ADS  Google Scholar 

  12. Lonzarich, G. G. Electron: A Centenary Volume, Ch. 6 (Cambridge Univ. Press, 1997).

    Google Scholar 

  13. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  ADS  Google Scholar 

  14. Kawasaki, M. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nature Nanotech. 6, 408–412 (2011).

    Article  ADS  Google Scholar 

  15. Rechester, A. B. Contribution to the theory of second-order phase transitions at low temperatures. Sov. Phys. JETP 33, 423–430 (1971).

    ADS  Google Scholar 

  16. Khmelnitskii, D. E. & Shneerson, V. L. Low-temperature displacement-type phase transition in crystals. Sov. Phys. Solid State 13, 687 (1971).

    Google Scholar 

  17. Khmelnitskii, D. E. & Shneerson, V. L. Phase transition of the displacement type in crystals at very low temperature. Sov. Phys. JETP 37, 164–170 (1973).

    ADS  Google Scholar 

  18. Larkin, A. I. & Khmelnitskii, D. E. Phase transition in uniaxial ferroelectrics. Sov. Phys. JETP 29, 1123–1128 (1969).

    ADS  Google Scholar 

  19. Schneider, T., Beck, H. & Stoll, E. Quantum effects in an n-component vector model for structural phase-transitions. Phys. Rev. B 13, 1123–1130 (1976).

    Article  ADS  Google Scholar 

  20. Bilz, H., Benedek, G. & Bussmann-Holder, A. Theory of ferroelectricity—the polarizability model. Phys. Rev. B 35, 4840–4849 (1987).

    Article  ADS  Google Scholar 

  21. Kvyatkovskii, O. E. Quantum effects in incipient and low-temperature ferroelectrics (a review). Phys. Solid State 43, 1401–1419 (2001).

    Article  ADS  Google Scholar 

  22. Roussev, R. & Millis, A. J. Theory of the quantum paraelectric–ferroelectric transition. Phys. Rev. B 67, 014105 (2003).

    Article  ADS  Google Scholar 

  23. Coleman, P. Theory perspective: SCES ’05 Vienna. Physica B 378–80, 1160–1169 (2006).

    Article  ADS  Google Scholar 

  24. Rowley, S. E. Quantum Phase Transitions in Ferroelectrics, Ph.D. thesis, (Univ. Cambridge, 2010)

  25. Rowley, S. et al. Ferromagnetic and ferroelectric quantum phase transitions. Phys. Status Solidi B 247, 469–475 (2010).

    Article  ADS  Google Scholar 

  26. Palova, L., Chandra, P. & Coleman, P. Quantum critical paraelectrics and the Casimir effect in time. Phys. Rev. B 79, 075101 (2009).

    Article  ADS  Google Scholar 

  27. Das, N. & Mishra, S. G. Fluctuations and criticality in quantum paraelectrics. J. Phys. Conden. Mater. 21, 095901 (2009).

    Article  ADS  Google Scholar 

  28. Conduit, G. J. & Simons, B. D. Theory of quantum paraelectrics and the metaelectric transition. Phys. Rev. B 81, 024102 (2010).

    Article  ADS  Google Scholar 

  29. Aharony, A. & Fisher, M. E. Critical behavior of magnets with dipolar interactions. I Renormalization group near four dimensions. Phys. Rev. B 8, 3323–3341 (1973).

    Article  ADS  Google Scholar 

  30. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, 2001).

    Book  Google Scholar 

  31. Strukov, B. A. & Levanyuk, A. P. Ferroelectric Phenomena in Crystals: Physical Foundations (Springer, 1998).

    Book  Google Scholar 

  32. Anderson, P. W. Conf. Proc., Lebedev Physics Inst. USSR Acad of Sci. Fizika Dielektrikov (Moscow) 290–297 (Nova Science Publishers, 1960).

    Google Scholar 

  33. Cochran, W. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387–423 (1960).

    Article  ADS  Google Scholar 

  34. Wang, R. & Itoh, M. Suppression of the quantum fluctuation in 18O-enriched strontium titanate. Phys. Rev. B 64, 174104 (2001).

    Article  ADS  Google Scholar 

  35. Itoh, M. & Wang, R. P. Quantum ferroelectricity in SrTiO3 induced by oxygen isotope exchange. Appl. Phys. Lett. 76, 221–223 (2000).

    Article  ADS  Google Scholar 

  36. Venturini, E. L., Samara, G. A., Itoh, M. & Wang, R. Pressure as a probe of the physics of 18O-substituted SrTiO3 . Phys. Rev. B 69, 184105 (2004).

    Article  ADS  Google Scholar 

  37. Anderson, P. W. Bose fluids above T c: Incompressible vortex fluids and ‘supersolidity’. Phys. Rev. Lett. 100, 215301 (2008).

    Article  ADS  Google Scholar 

  38. Kubota, M., Shimizu, N., Yasuta, Y., Kitamura, A. & Yagi, M. Transition into the supersolid (SS) state, supersolid density ρ ss and the critical velocity V c to destroy the SS state. J. Low Temp. Phys. 162, 483–491 (2011).

    Article  ADS  Google Scholar 

  39. Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965).

    Article  ADS  Google Scholar 

  40. Pfeiffer, E. R. & Schooley, J. F. Superconducting transition temperatures of Nb-doped SrTiO3 . Phys. Lett. 29A, 589–590 (1969).

    Article  ADS  Google Scholar 

  41. van der Marel, D., van Mechelen, J. L. M. & Mazin, I. I. Common Fermi-liquid origin of T2 resistivity and superconductivity in n-type SrTiO3 . Phys. Rev. B 84, 205111 (2011).

    Article  ADS  Google Scholar 

  42. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    Article  ADS  Google Scholar 

  43. Fischer, E. & Hegenbarth, E. Glasslike behaviour of SrTiO3 single-crystal at low temperatures. Ferroelectrics Lett. 5, 21–27 (1985).

    Article  Google Scholar 

  44. Viana, R., Lunkenheimer, P., Hemberger, J., Bohmer, R. & Loidl, A. Dielectric spectroscopy in SrTiO3 . Phys. Rev. B 50, 601–604 (1994).

    Article  ADS  Google Scholar 

  45. Uwe, H. & Sakudo, T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3 . Phys. Rev. B 13, 271–286 (1976).

    Article  ADS  Google Scholar 

  46. Yamada, Y. & Shirane, G. Neutron scattering and nature of the soft optical phonon in SrTiO3 . Phys. Soc. Jpn 26, 396–403 (1969).

    Article  ADS  Google Scholar 

  47. Uwe, H. & Sakudo, T. Electrostriction and stress-induced ferroelectricity in KTaO3 . J. Phys. Soc. Jpn 38, 183–189 (1975).

    Article  ADS  Google Scholar 

  48. Shirane, G., Nathans, R. & Minkiewicz, V. J. Temperature dependence of the soft ferroelectric mode in KTaO3 . Phys. Rev. 157, 396–399 (1967).

    Article  ADS  Google Scholar 

  49. Shigenari, T. et al. Raman spectra of the ferroelectric phase of SrTi18O3: Symmetry and domains below Tc and the origin of the phase transition. Phys. Rev. B 74, 174121 (2006).

    Article  ADS  Google Scholar 

  50. Takesada, M., Itoh, M. & Yagi, T. Perfect softening of the ferroelectric mode in the isotope-exchanged strontium titanate of SrTi18O3 studied by light scattering. Phys. Rev. Lett. 96, 227602 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. A. Carpenter, G. Catalan, P. Chandra, G. Chapline, S. J. Chorley, P. Coleman, G. Conduit, J. P. Griffiths, M. Grosche, C. R. S. Haines, D. E. Khmelnitskii, K. H. Kim, P. B. Littlewood, C. Liu, N. Marcano, N. D. Mathur, N. P. Ong, L. Pálová, C. Panagopoulos, E. Saitovitch, B. D. Simons, D. J. Singh and I. R. Walker for their help and discussions. We would also like to acknowledge support from Emmanuel, Jesus and Trinity colleges of the University of Cambridge, the Engineering and Physical Sciences Research Council (EPSRC grant EP/K012894/1), the European Research Council (ESF) COST P16, the Princeton Center for Complex Materials, IHT KAZATAPROM and the INTELBIOMAT programme.

Author information

Authors and Affiliations

Authors

Contributions

The findings presented in this paper arose out of a cooperative effort of all the authors, who each played an essential role.

Corresponding authors

Correspondence to S. E. Rowley, G. G. Lonzarich or S. S. Saxena.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1700 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowley, S., Spalek, L., Smith, R. et al. Ferroelectric quantum criticality. Nature Phys 10, 367–372 (2014). https://doi.org/10.1038/nphys2924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing