Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orbitally driven giant phonon anharmonicity in SnSe

Abstract

Understanding elementary excitations and their couplings in condensed matter systems is critical for developing better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The current record material for thermoelectric conversion efficiency, SnSe, has an ultralow thermal conductivity, but the mechanism behind the strong phonon scattering remains largely unknown. From inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and found the origin of the ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers new insights on how electron–phonon and phonon–phonon interactions may lead to the realization of ultralow thermal conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of structural distortion across the Cmcm–Pnma transition in SnSe and the corresponding electronic densities.
Figure 2: INS measurements and first-principles simulations reveal the strong dispersion anisotropy and softening with temperature of the low-energy optic phonons.
Figure 3: Phonon spectra at constant-Q, showing a strong softening with increasing temperature.
Figure 4: First-principles calculations of phonon transport and anharmonicity.

Similar content being viewed by others

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  ADS  Google Scholar 

  2. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009).

    Article  Google Scholar 

  3. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  ADS  Google Scholar 

  4. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  ADS  Google Scholar 

  5. Keppens, V. et al. Localized vibrational modes in metallic solids. Nature 395, 876–878 (1998).

    Article  ADS  Google Scholar 

  6. Koza, M. M. et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nature Mater. 7, 805–810 (2008).

    Article  ADS  Google Scholar 

  7. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nature Mater. 7, 811–815 (2008).

    Article  ADS  Google Scholar 

  8. Ma, J. et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2 . Nature Nanotech. 8, 445–451 (2013).

    Article  ADS  Google Scholar 

  9. Voneshen, D. J. et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nature Mater. 12, 1028–1032 (2013).

    Article  ADS  Google Scholar 

  10. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    Article  ADS  Google Scholar 

  11. Rhyee, J.-S. et al. Peierls distortion as a route to high thermoelectric performance in In4Se3−δ crystals. Nature 459, 965–968 (2009).

    Article  ADS  Google Scholar 

  12. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nature Mater. 8, 614–619 (2011).

    Article  ADS  Google Scholar 

  13. Nielsen, M. D., Ozolins, V. & Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6, 570–758 (2013).

    Article  Google Scholar 

  14. Li, C. W. et al. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys. Rev. Lett. 112, 175501 (2014).

    Article  ADS  Google Scholar 

  15. Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article  ADS  Google Scholar 

  16. Chen, C.-L., Wang, H., Chen, Y.-Y., Day, T. & Snyder, G. J. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J. Mater. Chem. A 2, 11171–11176 (2014).

    Article  Google Scholar 

  17. Sassi, S. et al. Assessment of the thermoelectric performance of polycrystalline p-type SnSe. Appl. Phys. Lett. 104, 212105 (2014).

    Article  ADS  Google Scholar 

  18. Carrete, J., Mingo, N. & Curtarolo, S. Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett. 105, 101907 (2014).

    Article  ADS  Google Scholar 

  19. Klemens, P. G. in Solid State Physics, Advances in Research and Applications Vol. 7 (eds Seitz, F. & Turnbull, D.) 1–98 (Academic Press, 1958).

    Google Scholar 

  20. Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    Article  ADS  Google Scholar 

  21. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Article  ADS  Google Scholar 

  22. Chattopadhyay, T., Pannetier, J. & Von Schnering, H. G. Neutron diffraction study of the structural phase transition in SnS and SnSe. J. Phys. Chem. Solids 47, 879–885 (1986).

    Article  ADS  Google Scholar 

  23. von Schnering, H. G. & Wiedemeier, H. The high temperature structure of α-SnS and β-SnSe and the B16-to-B33 type λ-transition path. Z. Kristallogr. 156, 143–150 (1981).

    Google Scholar 

  24. Cochran, W. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9, 387–423 (1960).

    Article  ADS  Google Scholar 

  25. Pawley, G. S., Cochran, W., Cowley, R. A. & Dolling, G. Diatomic ferroelectrics. Phys. Rev. Lett. 17, 753–755 (1966).

    Article  ADS  Google Scholar 

  26. Cowley, R. A. Anharmonic crystals. Rep. Prog. Phys. 31, 123–166 (1968).

    Article  ADS  Google Scholar 

  27. Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nature Commun. 5, 3525 (2014).

    Article  ADS  Google Scholar 

  28. Tremel, W. & Hoffmann, R. Tin sulfide, (Te2)2I2, and related compounds: Symmetry-controlled deformations in solid-state materials. Inorg. Chem. 26, 118–127 (1987).

    Article  Google Scholar 

  29. Wu, X., Vanderbilt, D. & Hamann, D. R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005).

    Article  ADS  Google Scholar 

  30. Orgel, L. E. The stereochemistry of B subgroup metals. Part II. The inert pair. J. Chem. Soc. 1959, 3815–3819 (1959).

    Article  Google Scholar 

  31. Waghmare, U. V., Spaldin, N. A., Kandpal, H. C. & Seshadri, R. First-principles indicators of metallicity and cation off-centricity in the IV–VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B 67, 125111 (2003).

    Article  ADS  Google Scholar 

  32. Chandrasekhar, H. R., Humphreys, R. G., Zwick, U. & Cardona, M. Infrared and Raman spectra of the IV–VI compounds SnS and SnSe. Phys. Rev. B 15, 2177–2183 (1977).

    Article  ADS  Google Scholar 

  33. Ehlers, G., Podlesnyak, A. A., Niedziela, J. L., Iverson, E. B. & Sokol, P. E. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance. Rev. Sci. Instrum. 82, 085108 (2011).

    Article  ADS  Google Scholar 

  34. Arnold, O. et al. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nucl. Instrum. Methods A 764, 156–166 (2014).

    Article  ADS  Google Scholar 

  35. Zheludev, A. ResLib 3.4 software (Oak Ridge National Laboratory, 2007); http://www.neutron.ethz.ch/research/resources/reslib

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  37. Kresse, G. & Hafner, J. J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  39. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  ADS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  41. Adouby, K., Pérez-Vicente, C., Jumas, J. C., Fourcade, R. & Touré, A. A. Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7 . Z. Kristallogr. 213, 343–349 (1998).

    Google Scholar 

  42. Squires, G. Introduction to the Theory of Thermal Neutron Scattering (Cambridge Univ. Press, 1978).

    Google Scholar 

  43. Adams, B. M. et al. DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 5.0 user’s manual. Sandia Technical Report SAND 2010-2183 (2013)

Download references

Acknowledgements

Neutron scattering measurements and analysis (O.D., C.W.L.) was supported as part of the S3TEC EFRC, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001299. Computer simulations and analysis were supported through CAMM (J.H., D.B.), funded by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Sample synthesis (A.F.M.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The use of Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The orientation of single crystals was characterized using the X-ray Laue camera system at the X-ray lab in SNS, ORNL (we thank J. K. Keum for his assistance). This research used resources of the Oak Ridge Leadership Computing Facility (OLCF), which is supported by the Office of Science of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

C.W.L. and O.D. performed the neutron scattering measurements with help from S.C., T.H. and G.E. J.H. and D.B. performed the first-principles simulations and lattice dynamics modelling. A.F.M. synthesized the samples. O.D., C.W.L. and J.H. wrote the manuscript and all authors commented on it. O.D. supervised the project.

Corresponding authors

Correspondence to C. W. Li, J. Hong or O. Delaire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hong, J., May, A. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nature Phys 11, 1063–1069 (2015). https://doi.org/10.1038/nphys3492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3492

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing