Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A cell-free system for functional centromere and kinetochore assembly

Abstract

This protocol describes a cell-free system for studying vertebrate centromere and kinetochore formation. We reconstitute tandem arrays of centromere protein A (CENP-A) nucleosomes as a substrate for centromere and kinetochore assembly. These chromatin substrates are immobilized on magnetic beads and then incubated in Xenopus egg extracts that provide a source for centromere and kinetochore proteins and that can be cycled between mitotic and interphase cell cycle states. This cell-free system lends itself to use in protein immunodepletion, complementation and drug inhibition as a tool to perturb centromere and kinetochore assembly, cytoskeletal dynamics, DNA modification and protein post-translational modification. This system provides a distinct advantage over cell-based investigations in which perturbing centromere and kinetochore function often results in lethality. After incubation in egg extract, reconstituted CENP-A chromatin specifically assembles centromere and kinetochore proteins, which locally stabilize microtubules and, on microtubule depolymerization with nocodazole, activate the mitotic checkpoint. A typical experiment takes 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A cell-free system for centromere and kinetochore reconstitution.
Figure 2: The cell-free system can be used to analyze centromere assembly, kinetochore assembly, microtubule polymerization and mitotic checkpoint activation.
Figure 3: Generation and analysis of biotinylated DNA arrays for chromatin reconstitution.
Figure 4: Experimental apparatus for assembling chromatin arrays by salt dialysis.
Figure 5: Analysis and quality control of the chromatin array assemblies.
Figure 6: Setup of an immunofluorescence experiment and of spin-down tubes for the analysis of microtubule polymerization.
Figure 7: Representative images of anticipated results using the cell-free system to analyze centromere and kinetochore assembly and function.

Similar content being viewed by others

References

  1. Cheeseman, I.M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Guse, A., Carroll, C.W., Moree, B., Fuller, C.J. & Straight, A.F. In vitro centromere and kinetochore assembly on defined chromatin templates. Nature 477, 354–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huynh, V., Robinson, P. & Rhodes, D. A method for the in vitro reconstitution of a defined. J. Mol. Biol. 345, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Luger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M. & Richmond, T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Desai, A., Deacon, H.W., Walczak, C.E. & Mitchison, T.J. A method that allows the assembly of kinetochore components onto chromosomes condensed in clarified Xenopus egg extracts. Proc. Natl. Acad. Sci. USA 94, 12378–12383 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Maresca, T.J. & Heald, R. Methods for studying spindle assembly and chromosome condensation in Xenopus egg extracts. Methods Mol. Biol. 322, 459–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Murray, A.W. & Kirschner, M.W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Desai, A., Murray, A., Mitchison, T.J. & Walczak, C.E. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hannak, E. & Heald, R. Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat. Protoc. 1, 2305–2314 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Carroll, C.W., Milks, K.J. & Straight, A.F. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J. Cell Biol. 189, 1143–1155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carroll, C.W., Silva, M.C., Godek, K.M., Jansen, L.E. & Straight, A.F. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat. Cell Biol. 11, 896–902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowary, P. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Luger, K., Rechsteiner, T. & Richmond, T. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Minshull, J., Sun, H., Tonks, N.K. & Murray, A.W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79, 475–486 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S., Song, E., Lee, K. & Ferrell, J. Jr. Multisite M-phase phosphorylation of Xenopus Wee1A. Mol. Cell Biol. 25, 10580–10590 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blow, J.J. & Laskey, R.A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K. & Willard, H.F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol. 16, 431–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Nakashima, H. et al. Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. J. Cell Sci. 118, 5885–5898 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Okada, T. et al. CENP-B controls centromere formation depending on the chromatin context. Cell 131, 1287–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell. 14, 507–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohzeki, J. et al. Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 31, 2391–2402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barnhart, M.C. et al. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gascoigne, K.E. et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145, 410–422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mendiburo, M.J., Padeken, J., Fulop, S., Schepers, A. & Heun, P. Drosophila CENH3 is sufficient for centromere formation. Science 334, 686–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Hyman, A.A., Middleton, K., Centola, M., Mitchison, T.J. & Carbon, J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature 359, 533–536 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Kingsbury, J. & Koshland, D. Centromere-dependent binding of yeast minichromosomes to microtubules in vitro. Cell 66, 483–495 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Sandall, S. et al. A Bir1-Sli15 complex connects centromeres to microtubules and is required to sense kinetochore tension. Cell 127, 1179–1191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorger, P.K., Severin, F.F. & Hyman, A.A. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J. Cell Biol. 127, 995–1008 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Akiyoshi, B., Nelson, C.R., Ranish, J.A. & Biggins, S. Quantitative proteomic analysis of purified yeast kinetochores identifies a PP1 regulatory subunit. Genes Dev. 23, 2887–2899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  34. Vary, J.C. Jr, Fazzio, T.G. & Tsukiyama, T. Assembly of yeast chromatin using ISWI complexes. Methods Enzymol. 375, 88–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Selleck, W. & Tan, S. Recombinant protein complex expression in E. coli. Curr. Protoc. Protein Sci. 52, 5.21.1–5.21.21 (2008).

    Article  Google Scholar 

  36. Tan, S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr. Purif. 21, 224–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Black, B.E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Thastrom, A. et al. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The phospho-Wee1 antibody was a gift from J.E. Ferrell (Stanford University School of Medicine). The histone expression plasmids were a gift from K. Luger (Colorado State University). The pST39 plasmid was a gift from S. Tan (Pennsylvania State University). The 19 × 601 plasmid was a gift from D. Rhodes (Medical Research Council Laboratory of Molecular Biology). A.G. was supported by a postdoctoral fellowship from the German Research Foundation (DFG), C.J.F. by a Stanford Lieberman Fellowship, and this work was supported by US National Institutes of Health grant no. R01GM074728 to A.F.S.

Author information

Authors and Affiliations

Authors

Contributions

A.G., C.J.F. and A.F.S. wrote the manuscript.

Corresponding author

Correspondence to Aaron F Straight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

beadMeasurements3.m. MATLAB script for quantifying fluorescence associated with beads in three channels, which implements the analysis described in Box 3. (Documentation on using the script is contained in the comments in the script file.) (ZIP 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guse, A., Fuller, C. & Straight, A. A cell-free system for functional centromere and kinetochore assembly. Nat Protoc 7, 1847–1869 (2012). https://doi.org/10.1038/nprot.2012.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing