Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient ΦC31 integrase–mediated site-specific germline transformation of Anopheles gambiae

Abstract

Current transgenic methodology developed for mosquitoes has not been applied widely to the major malaria vector Anopheles gambiae, which has proved more difficult to genetically manipulate than other mosquito species and dipteran insects. In this protocol, we describe ΦC31-mediated site-specific integration of transgenes into the genome of A. gambiae. The ΦC31 system has many advantages over 'classical' transposon-mediated germline transformation systems, because it allows integration of large transgenes at specific, characterized genomic locations. Starting from a general protocol, we have optimized steps from embryo collection to co-injection of transgene-containing plasmid and in vitro–produced ΦC31 integrase mRNA. We also provide tips for screening transgenic larvae. The outlined procedure provides robust transformation in A. gambiae, resulting in homozygous transgenic lines in 2–3 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of ΦC31 site-specific transformation in A. gambiae.
Figure 2: Fluorescence profile of larvae from standard docking strain and self-docking strain.
Figure 3: Timeline and flow diagram for site-specific ΦC31 transformation in A. gambiae mosquitoes.
Figure 4: Oviposition chamber.
Figure 5: G1 screening system.
Figure 6: G0 larvae expressing transient fluorescence.
Figure 7: False-positive G1 larvae.

Similar content being viewed by others

Accession codes

Accessions

DDBJ/GenBank/EMBL

European Nucleotide Archive

References

  1. Dimopoulos, G. et al. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. USA 99, 8814–8819 (2002).

    Article  CAS  Google Scholar 

  2. Meister, S. et al. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 102, 11420–11425 (2005).

    Article  CAS  Google Scholar 

  3. Pinto, S.B. et al. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 106, 21270–21275 (2009).

    Article  CAS  Google Scholar 

  4. Fontaine, A. et al. Anopheles salivary gland proteomes from major malaria vectors. BMC Genomics 13, 614 (2012).

    Article  CAS  Google Scholar 

  5. Choumet, V. et al. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 7, 3384–3394 (2007).

    Article  CAS  Google Scholar 

  6. Rinker, D.C. et al. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 110, 8260–8265 (2013).

    Article  CAS  Google Scholar 

  7. Bonizzoni, M. et al. Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-seq. PLoS ONE 7, e44607 (2012).

    Article  CAS  Google Scholar 

  8. Thailayil, J., Magnusson, K., Godfray, H.C.J., Crisanti, A. & Catteruccia, F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 108, 13677–13681 (2011).

    Article  CAS  Google Scholar 

  9. Butail, S., Manoukis, N.C., Diallo, M., Ribeiro, J.M. & Paley, D.A. The dance of male Anopheles gambiae in wild mating swarms. J. Med. Entomol. 50, 552–559 (2013).

    Article  Google Scholar 

  10. Lombardo, F. et al. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect. Mol. Biol. 14, 207–216 (2005).

    Article  CAS  Google Scholar 

  11. Catteruccia, F., Benton, J.P. & Crisanti, A. An Anopheles transgenic sexing strain for vector control. Nat. Biotechnol. 23, 1414–1417 (2005).

    Article  CAS  Google Scholar 

  12. Catteruccia, F. et al. Toward Anopheles transformation: Minos element activity in anopheline cells, and embryos. Proc. Natl. Acad. Sci. USA 97, 6236 (2000).

    Article  CAS  Google Scholar 

  13. Moreira, L.A., Wang, J., Collins, F.H. & Jacobs-Lorena, M. Fitness of Anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics 166, 1337–1341 (2004).

    Article  Google Scholar 

  14. Isaacs, A.T. et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl. Acad. Sci. USA 109, E1922–E1930 (2012).

    Article  CAS  Google Scholar 

  15. Abraham, E.G. et al. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proc. Natl. Acad. Sci. USA 102, 16327–16332 (2005).

    Article  CAS  Google Scholar 

  16. Blandin, S. et al. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3, 852–856 (2002).

    Article  CAS  Google Scholar 

  17. Blandin, S. et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116, 661–670 (2004).

    Article  CAS  Google Scholar 

  18. Blandin, S.A. et al. Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. Science 326, 147–150 (2009).

    Article  CAS  Google Scholar 

  19. Boisson, B. et al. Gene silencing in mosquito salivary glands by RNAi. FEBS Lett. 580, 1988–1992 (2006).

    Article  CAS  Google Scholar 

  20. Osta, M.A., Christophides, G.K. & Kafatos, F.C. Effects of mosquito genes on Plasmodium development. Science 303, 2030–2032 (2004).

    Article  CAS  Google Scholar 

  21. Catteruccia, F. et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959–962 (2000).

    Article  CAS  Google Scholar 

  22. Grossman, G.L. et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect. Mol. Biol. 10, 597–604 (2001).

    Article  CAS  Google Scholar 

  23. Kim, W. et al. Ectopic expression of a cecropin transgene in the human malaria vector mosquito Anopheles gambiae (Diptera: Culicidae): effects on susceptibility to Plasmodium. J. Med. Entomol. 41, 447–455 (2004).

    Article  CAS  Google Scholar 

  24. Lobo, N.F., Clayton, J.R., Fraser, M.J., Kafatos, F.C. & Collins, F.H. High efficiency germ-line transformation of mosquitoes. Nat. Protoc. 1, 1312–1317 (2006).

    Article  CAS  Google Scholar 

  25. Benedict, M. Microinjection methods for Anopheles embryos. in Methods in Anopheles Research (http://www.mr4.org/Publications/MethodsinAnophelesResearch.aspx) (MR4, 2007).

  26. Lombardo, F., Lycett, G., Lanfrancotti, A., Coluzzi, M. & Arca, B. Analysis of apyrase 5 upstream region validates improved Anopheles gambiae transformation technique. BMC Research Notes 2, 24 (2009).

    Article  Google Scholar 

  27. Fuchs, S., Nolan, T. & Crisanti, A. Mosquito transgenic technologies to reduce Plasmodium transmission. in Malaria Vol. 923 (ed. Ménard, R.) 601–622 (Humana Press, 2013).

  28. O'Brochta, D.A., Alford, R.T., Pilitt, K.L., Aluvihare, C.U. & Harrell, R.A. piggyBac transposon remobilization and enhancer detection in Anopheles mosquitoes. Proc. Natl. Acad. Sci. 108, 16339–16344 (2011).

    Article  Google Scholar 

  29. O'Brochta, D.A., Pilitt, K.L., Harrell, R.A. II, Aluvihare, C. & Alford, R.T. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. G3 (Bethesda) 2, 1305–1315 (2012).

    Article  CAS  Google Scholar 

  30. Lycett, G.J., Amenya, D. & Lynd, A. The Anopheles gambiae α-tubulin-1b promoter directs neuronal, testes and developing imaginal tissue specific expression and is a sensitive enhancer detector. Insect Mol. Biol. 21, 79–88 (2012).

    Article  CAS  Google Scholar 

  31. Franz, A.W.E. et al. Comparison of transgene expression in Aedes aegypti generated by mariner Mos1 transposition and ΦC31 site-directed recombination. Insect Mol. Biol. 20, 587–598 (2011).

    Article  CAS  Google Scholar 

  32. Thorpe, H.M. & Smith, M.C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95, 5505–5510 (1998).

    Article  CAS  Google Scholar 

  33. Meredith, J.M. et al. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS ONE 6, e14587 (2011).

    Article  CAS  Google Scholar 

  34. Windbichler, N. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011).

    Article  CAS  Google Scholar 

  35. Fish, M.P., Groth, A.C., Calos, M.P. & Nusse, R. Creating transgenic Drosophila by microinjecting the site-specific ΦC31 integrase mRNA and a transgene-containing donor plasmid. Nat. Protoc. 2, 2325–2331 (2007).

    Article  CAS  Google Scholar 

  36. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage ΦC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  Google Scholar 

  37. Labbé, G.M.C., Nimmo, D.D. & Alphey, L. piggyBac- and ΦC31-mediated genetic transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse). PLoS Negl. Trop. Dis. 4, e788 (2010).

    Article  Google Scholar 

  38. Smidler, A.L., Terenzi, O., Soichot, J., Levashina, E.A. & Marois, E. Targeted mutagenesis in the malaria mosquito using TALE nucleases. PLoS ONE 8, e74511 (2013).

    Article  CAS  Google Scholar 

  39. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  40. Nimmo, D.D., Alphey, L., Meredith, J.M. & Eggleston, P. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol. Biol. 15, 129–136 (2006).

    Article  CAS  Google Scholar 

  41. Meredith, J.M., Underhill, A., McArthur, C.C. & Eggleston, P. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific ΦC31 integrase. PLoS ONE 8, e59264 (2013).

    Article  CAS  Google Scholar 

  42. Bischof, J., Maeda, R.K., Hediger, M., Karch, F.ß. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific ΦC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  Google Scholar 

  43. Long, D. et al. In vivo site-specific integration of transgene in silkworm via ΦC31 integrase-mediated cassette exchange. Insect Biochem. Mol. Biol. 43, 997–1008 (2013).

    Article  CAS  Google Scholar 

  44. Ringrose, L. Transgenesis in Drosophila melanogaster. Methods Mol. Biol. 561, 3–19 (2009).

    Article  CAS  Google Scholar 

  45. Horn, C., Schmid, B.G., Pogoda, F.S. & Wimmer, E.A. Fluorescent transformation markers for insect transgenesis. Insect Biochem. Mol. Biol. 32, 1221–1235 (2002).

    Article  CAS  Google Scholar 

  46. Perera, O.P., Harrell, I.R. & Handler, A.M. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol. Biol. 11, 291–297 (2002).

    Article  CAS  Google Scholar 

  47. Lynd, A. & Lycett, G.J. Development of the bi-partite Gal4-UAS system in the African Malaria Mosquito, Anopheles gambiae. PLoS ONE 7, e31552 (2012).

    Article  CAS  Google Scholar 

  48. Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S. & Calos, M.P. Site-specific genomic integration in mammalian cells mediated by phage ΦC31 integrase. Mol. Cell Biol. 21, 3926–3934 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Photography Department of Institut Pasteur, especially F. Gardy and J.-M. Panaud for the production of the video for embryo alignment, and to M. Calos for pET11-ΦC31 and original attP and attB constructs. We thank A. James, A. Handler and N. Windbichler for helpful technical discussions. Support to E.P. was from an ANR-07-MIME-O25-01 award to C.B., from the Roux Foundation (Pasteur Institute) and from a UE323173 Anopath award to K.D.V.; to C.B. from award no. ANR-10-LABX-62-IBEID; to P.E. from a Wellcome Trust Programme grant (0084582) and the EU FP7 (INFRAVEC); and to G.J.L. from European Commission grant no. 223726 (TransMalariaBloc) and a Biotechnology and Biological Sciences Research Council grant (no. BB/F021933/1).

Author information

Authors and Affiliations

Authors

Contributions

E.P., N.P., J.M.M., A.L. and G.J.L. performed the research; C.B., G.J.L. and P.E. designed and supervised the research; K.D.V. supervised the research; and E.P., A.L., G.J.L., P.E. and C.B. wrote the manuscript.

Corresponding authors

Correspondence to Emilie Pondeville or Catherine Bourgouin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Primers and PCR parameters to detect transgene site-specific integration. (PDF 80 kb)

Supplementary Video 1

Anopheles gambiae embryo alignment for microinjection. (MOV 66430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pondeville, E., Puchot, N., Meredith, J. et al. Efficient ΦC31 integrase–mediated site-specific germline transformation of Anopheles gambiae. Nat Protoc 9, 1698–1712 (2014). https://doi.org/10.1038/nprot.2014.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.117

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research