Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of resistance and tolerance to virus infection in Drosophila

Abstract

Host defense to virus infection involves both resistance mechanisms that reduce viral burden and tolerance mechanisms that limit detrimental effects of infection. The fruit fly, Drosophila melanogaster, has emerged as a model for identifying and characterizing the genetic basis of resistance and tolerance. This protocol describes how to analyze host responses to virus infection in Drosophila, and it covers the preparation of virus stocks, experimental inoculation of flies and assessment of host survival and virus production, which are indicative of resistance or tolerance. It also provides guidance on how to account for recently identified confounding factors, including natural genetic variation in the pastrel locus and contamination of fly stocks with persistent viruses and the symbiotic bacterium Wolbachia. Our protocol aims to be accessible to newcomers to the field and, although optimized for virus research using Drosophila, some of the techniques could be adapted to other host organisms and/or other microbial pathogens. Preparation of fly stocks requires 1 month, virus stock preparation requires 17–20 d, virus injection and survival assays require 10–15 d and virus titration requires 14 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experimental workflow.
Figure 2: Structure of the pastrel locus and location of SNPs.
Figure 3: Parameters that affect mortality in survival assays.
Figure 4: Practical setup for bleaching of embryos.
Figure 5: Intra-thoracic and intra-abdominal injection sites.

Similar content being viewed by others

References

  1. Medzhitov, R., Schneider, D.S. & Soares, M.P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  CAS  Google Scholar 

  2. Ayres, J.S. & Schneider, D.S. Tolerance of infections. Annu. Rev. Immunol. 30, 271–294 (2012).

    Article  CAS  Google Scholar 

  3. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  Google Scholar 

  4. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  Google Scholar 

  5. Bronkhorst, A.W. et al. The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc. Natl. Acad. Sci. USA 109, E3604–E3613 (2012).

    Article  CAS  Google Scholar 

  6. van Rij, R.P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20, 2985–2995 (2006).

    Article  CAS  Google Scholar 

  7. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J.A. & Imler, J.-L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat. Immunol. 7, 590–597 (2006).

    Article  CAS  Google Scholar 

  8. Mueller, S. et al. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl. Acad. Sci. USA 107, 19390–19395 (2010).

    Article  CAS  Google Scholar 

  9. Wang, X.-H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    Article  CAS  Google Scholar 

  10. Kemp, C. et al. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila. J. Immunol. 190, 650–658 (2013).

    Article  CAS  Google Scholar 

  11. Dostert, C. et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol. 6, 946–953 (2005).

    Article  CAS  Google Scholar 

  12. Merkling, S.H. et al. The epigenetic regulator G9a mediates tolerance to RNA virus infection in Drosophila. PLoS Pathog. 11, e1004692 (2015).

    Article  Google Scholar 

  13. Ferreira, Á.G. et al. The Toll-Dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog. 10, e1004507 (2014).

    Article  Google Scholar 

  14. Merkling, S.H. & van Rij, R.P. Beyond RNAi: antiviral defense strategies in Drosophila and mosquito. J. Insect Physiol. 59, 159–170 (2013).

    Article  CAS  Google Scholar 

  15. Deddouche, S. et al. The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in Drosophila. Nat. Immunol. 9, 1425–1432 (2008).

    Article  CAS  Google Scholar 

  16. Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2 (2008).

    Article  Google Scholar 

  17. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5, 81–87 (2004).

    Article  CAS  Google Scholar 

  18. Huszar, T. & Imler, J.L. Drosophila viruses and the study of antiviral host-defense. Adv. Virus Res. 72, 227–265 (2008).

    Article  CAS  Google Scholar 

  19. Chtarbanova, S. et al. Drosophila C virus systemic infection leads to intestinal obstruction. J. Virol. 88, 14057–14069 (2014).

    Article  Google Scholar 

  20. Eleftherianos, I. et al. ATP-sensitive potassium channel (KATP)-dependent regulation of cardiotropic viral infections. Proc. Natl. Acad. Sci. USA 108, 12024–12029 (2011).

    Article  CAS  Google Scholar 

  21. Habayeb, M.S. et al. The Drosophila Nora virus is an enteric virus, transmitted via feces. J. Invertebr. Pathol. 101, 29–33 (2009).

    Article  Google Scholar 

  22. Brun, P. & Plus, N. in The Genetics and Biology of Drosophila, Vol. 2e. (eds. Ashburner, M. & Wright, T.) 625–702 (Academic Press, 1980).

  23. Kapun, M., Nolte, V., Flatt, T. & Schlo, C. Host range and specificity of the Drosophila C virus. PLoS ONE 5, e12421 (2010).

    Article  Google Scholar 

  24. Plus, N., Croizier, G., Jousset, F.X. & David, J. Picornaviruses of laboratory and wild Drosophila melanogaster: geographical distribution and serotypic composition. Ann. Microbiol. (Paris) 126, 107–117 (1975).

    CAS  Google Scholar 

  25. Habayeb, M.S., Ekengren, S.K. & Hultmark, D. Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. J. Gen. Virol. 87, 3045–3051 (2006).

    Article  CAS  Google Scholar 

  26. Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).

    Article  Google Scholar 

  27. Magwire, M.M. et al. Genome-wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses in Drosophila melanogaster. PLoS Genet. 8, e1003057 (2012).

    Article  CAS  Google Scholar 

  28. Dru, P. et al. Unusual variability of the Drosophila melanogaster ref(2)P protein which controls the multiplication of sigma rhabdovirus. Genetics 133, 943–954 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Contamine, D., Petitjean, A.M. & Ashburner, M. Genetic resistance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123, 525–533 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van Mierlo, J.T. et al. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathog. 8, e1002872 (2012).

    Article  CAS  Google Scholar 

  31. Ashburner, M. Drosophila: a Laboratory Manual (Cold Spring Harbor Laboratory, 1989).

  32. Martins, N.E. et al. Host adaptation to viruses relies on few genes with different cross-resistance properties. Proc. Natl. Acad. Sci. USA 111, 5938–5943 (2014).

    Article  CAS  Google Scholar 

  33. Costa, A., Jan, E., Sarnow, P. & Schneider, D. The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS ONE 4, e7436–e7436 (2009).

    Article  Google Scholar 

  34. Goic, B. et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat. Immunol. 14, 396–403 (2013).

    Article  CAS  Google Scholar 

  35. Durdevic, Z. et al. Efficient RNA virus control in Drosophila requires the RNA methyltransferase Dnmt2. EMBO Rep. 14, 269–275 (2013).

    Article  CAS  Google Scholar 

  36. Xu, J. et al. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc. Natl. Acad. Sci. USA 110, 15025–15030 (2013).

    Article  CAS  Google Scholar 

  37. Apidianakis, Y. & Rahme, L.G. Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat. Protoc. 4, 1285–1294 (2009).

    Article  CAS  Google Scholar 

  38. Bewick, V., Cheek, L. & Ball, J. Statistics review 12: survival analysis. Crit. Care 8, 389–394 (2004).

    Article  Google Scholar 

  39. Jousset, F.X. & Plus, N. [Study of the vertical transmission and horizontal transmission of 'Drosophila melanogaster' and 'Drosophila immigrans' picornavirus (author's transl)]. Ann. Microbiol. (Paris) 126, 231–249 (1975).

    CAS  Google Scholar 

  40. Carpenter, J.A., Obbard, D.J., Maside, X. & Jiggins, F.M. The recent spread of a vertically transmitted virus through populations of Drosophila melanogaster. Mol. Ecol. 16, 3947–3954 (2007).

    Article  CAS  Google Scholar 

  41. Habayeb, M.S., Ekström, J.-O. & Hultmark, D. Nora virus persistent infections are not affected by the RNAi machinery. PLoS ONE 4, e5731 (2009).

    Article  Google Scholar 

  42. Ambrose, R.L. et al. Drosophila A virus is an unusual RNA virus with a T=3 icosahedral core and permuted RNA-dependent RNA polymerase. J. Gen. Virol. 90, 2191–2200 (2009).

    Article  CAS  Google Scholar 

  43. Vodovar, N., Goic, B., Blanc, H. & Saleh, M.C. In silico reconstruction of viral genomes from small RNAs improves virus-derived small interfering RNA profiling. J. Virol. 85, 11016–11021 (2011).

    Article  Google Scholar 

  44. Wu, Q. et al. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. USA 107, 1606–1611 (2010).

    Article  CAS  Google Scholar 

  45. Flynt, A., Liu, N., Martin, R. & Lai, E.C. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc. Natl. Acad. Sci. USA 106, 5270–5275 (2009).

    Article  CAS  Google Scholar 

  46. Kangro, H.O. & Mahy, B.W.J. Virology Methods Manual (Elsevier Science, 1996).

  47. Chambers, M.C., Jacobson, E., Khalil, S. & Lazzaro, B.P. Thorax injury lowers resistance to infection in Drosophila melanogaster. Infect. Immun. 82, 4380–4389 (2014).

    Article  CAS  Google Scholar 

  48. Apidianakis, Y. et al. Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma. PLoS ONE 2, e1356 (2007).

    Article  Google Scholar 

  49. Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  Google Scholar 

  50. Teixeira, L.s., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, e2–e2 (2008).

    Article  Google Scholar 

  51. Perrault, J. Origin and replication of defective interfering particles. Curr. Top. Microbiol. Immunol. 93, 151–207 (1981).

    CAS  PubMed  Google Scholar 

  52. McClure, M.A., Holland, J.J. & Perrault, J. Generation of defective interfering particles in picornaviruses. Virology 100, 408–418 (1980).

    Article  CAS  Google Scholar 

  53. Lindenbach, B.D. Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol. Biol. 510, 329–336 (2009).

    Article  CAS  Google Scholar 

  54. Ayres, J.S. & Schneider, D.S. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 7, e1000150 (2009).

    Article  Google Scholar 

  55. Clark, R.I. et al. MEF2 is an in vivo immune-metabolic switch. Cell 155, 435–447 (2013).

    Article  CAS  Google Scholar 

  56. Buchon, N., Silverman, N. & Cherry, S. Immunity in Drosophila melanogaster-from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796–810 (2014).

    Article  CAS  Google Scholar 

  57. Schneider, D.S. & Ayres, J.S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008).

    Article  CAS  Google Scholar 

  58. Echalier, G. in Drosophila Cells in Culture (ed. Echalier, G.) 555–595 (Academic Press, 1997).

Download references

Acknowledgements

We thank members of the van Rij laboratory for helpful discussions, and P. Miesen for critical reading of the manuscript. For providing fly stocks, we thank the Bloomington Stock Center. This work is supported by a PhD fellowship from the Radboud Institute for Molecular Life Sciences. Research in the laboratory is funded by an Excellent Chemisch Onderzoek (ECHO) project grant (grant number 711.013.001) and the Open Program of the Division for Earth and Life Sciences (grant number 821.02.028) from the Netherlands organization for scientific research (NWO) and a European Research Council consolidator grant under the European Union's Seventh Framework Programme (ERC grant number 615680).

Author information

Authors and Affiliations

Authors

Contributions

S.H.M. performed the experiments; S.H.M. and R.P.v.R. conceived and designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Ronald P van Rij.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Data (PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkling, S., van Rij, R. Analysis of resistance and tolerance to virus infection in Drosophila. Nat Protoc 10, 1084–1097 (2015). https://doi.org/10.1038/nprot.2015.071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.071

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing