Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Electroactive poly(vinylidene fluoride)-based structures for advanced applications

Abstract

Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the β phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer β phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic representation of the preparation of the PVDF-based solution.
Figure 3: Schematic representation of the preparation of β-PVDF films by doctor blade (option A).
Figure 4: Schematic representation of the preparation of β-PVDF by spin coating (option B).
Figure 5: Schematic representation of the preparation of patterned P(VDF-TrFE) films by ink-jet printing (option C).
Figure 6: Schematic representation of the preparation of patterned P(VDF-TrFE) films by screen printing (option D).
Figure 7: Schematic representation of the preparation of patterned P(VDF-TrFE) by spray printing/coating (option E).
Figure 8: Schematic representation of the preparation of porous β-PVDF films by NIPS (option F).
Figure 9: Schematic representation of the preparation of porous β-PVDF films by TIPS (option G).
Figure 10: Schematic representation of the preparation of 3D β-PVDF scaffolds by solvent-casting particulate leaching (option H).
Figure 11: Schematic representation of the preparation of 3D β-PVDF scaffolds by solvent-casting and 3D nylon templates (option I).
Figure 12: Schematic representation of the preparation of 3D β-PVDF scaffolds by freeze extraction with a 3D PVA template (option J).
Figure 13: Schematic representation for the preparation of patterned β-PVDF structures by replica molding (option K).
Figure 14: Schematic representation of the preparation of β-PVDF fibers and spheres by electrospinning and electrospraying (options L and M, respectively).
Figure 15: PVDF film thickness as a function of rotational velocity.
Figure 16: Representative SEM images of the distinct structures/morphologies that can be obtained from the different protocols using PVDF or its copolymers.

Similar content being viewed by others

References

  1. Cauda, V. et al. Nanostructured piezoelectric polymers. J. Appl. Polym. Sci. 132, 41667 (2015).

    Article  CAS  Google Scholar 

  2. Ramadan, K.S. et al. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001 (2014).

    Article  CAS  Google Scholar 

  3. Yuan, X. et al. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. J. Phys. Conf. Ser. 744, 012077 (2016).

    Article  CAS  Google Scholar 

  4. Lang, S.B. & Muensit, S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys. A 85, 125–134 (2006).

    Article  CAS  Google Scholar 

  5. Li, B. et al. Self-polarized piezoelectric thin films: preparation, formation mechanism and application. J. Mater. Chem. C 3, 8926–8931 (2015).

    Article  CAS  Google Scholar 

  6. Izumi, T. et al. Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients. IEEE Trans. Ultrason., Ferroelect., Freq. Control 59, 1632–1638 (2012).

    Article  Google Scholar 

  7. Tagantsev, A.K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986).

    Article  CAS  Google Scholar 

  8. Roberts, S. Dielectric and piezoelectric properties of barium titanate. Phys. Rev. 71, 890–895 (1947).

    Article  CAS  Google Scholar 

  9. Coombs, G.J. & Cowley, R.A. Paraelectric, piezoelectric and pyroelectric crystals: I. Dielectric properties. J. Phys. C 6, 121–142 (1973).

    Article  CAS  Google Scholar 

  10. Purvis, C.K. & Taylor, P.L. Piezoelectric and pyroelectric coefficients for ferroelectric crystals with polarizable molecules. Phys. Rev. B 26, 4564–4570 (1982).

    Article  Google Scholar 

  11. Panda, P.K. Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009).

    Article  CAS  Google Scholar 

  12. GH, H. Piezoelectric and Electro-optic Ceramics in Ceramic Materials for Electronics 2nd edn. (Marcel Dekker, 1991).

  13. Aksel, E. & Jones, J.L. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10, 1935–1954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martins, P., Lopes, A.C. & Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014).

    Article  CAS  Google Scholar 

  15. Sebastian, M.S. et al. Understanding nucleation of the electroactive β-phase of poly(vinylidene fluoride) by nanostructures. RSC Adv. 6, 113007–113015 (2016).

    Article  CAS  Google Scholar 

  16. Lu, F.J. & Hsu, S.L. Spectroscopic study of the electric field induced microstructural changes in poly(vinylidene fluoride). Polymer 25, 1247–1252 (1984).

    Article  CAS  Google Scholar 

  17. Mandal, D. et al. The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 73, 123–125 (2012).

    Article  CAS  Google Scholar 

  18. Mandal, D. et al. Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films. Langmuir 28, 10310–10317 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, S.K. et al. The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC Adv. 4, 41886–41894 (2014).

    Article  CAS  Google Scholar 

  20. Gomes, J. et al. Influence of the β-phase content and degreeof crystallinity on the piezo-and ferroelectric properties of poly(vinylidene fluoride). Smart Mater. Struct. 19, 065010 (2010).

    Article  CAS  Google Scholar 

  21. Gonçalves, R. et al. Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale 7, 8058–8061 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Martins, P.M. et al. Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/Poly(vinylidene difluoride)-trifluoroethylene composite membranes. J. Phys. Chem. C 118, 27944–27953 (2014).

    Article  CAS  Google Scholar 

  23. Sessler, G.M. Piezoelectricity in polyvinylidenefluoride. J. Acoust. Soc. Am. 70, 1596–1608 (1981).

    Article  CAS  Google Scholar 

  24. Cardoso, V.F. et al. Micro and nanofilms of poly(vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications. Smart Mater. Struct. 20, 087002 (2011).

    Article  CAS  Google Scholar 

  25. Cardoso, V.F. et al. Improving the optical and electroactive response of poly(vinylidene fluoride-trifluoroethylene) spin-coated films for sensor and actuator applications. Smart Mater. Struct. 21, 085020 (2012).

    Article  CAS  Google Scholar 

  26. Martins, P. et al. Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P(VDF-TrFE) nanocomposites. Appl. Surf. Sci. 313, 215–219 (2014).

    Article  CAS  Google Scholar 

  27. Sencadas, V. et al. Influence of the processing conditions and corona poling on the morphology of β-PVDF. Proc. 12th Int. Symp. Electrets 2005 161–164 (2005).

  28. Nagayasu, K. et al. Vibration distribution reconstruction and control of a thin plate by using distributed PVDF sensors affixed to the plate. Proc. SPIE Int. Soc. Opt. Eng. 3984, 576–586 (2000).

    Google Scholar 

  29. Ambrosy, A. & Holdik, K. Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E 17, 856–859 (1984).

    Article  CAS  Google Scholar 

  30. Seminara, L. et al. Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens. Actuators A 169, 49–58 (2011).

    Article  CAS  Google Scholar 

  31. Miao, H. et al. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy. J. Appl. Phys. 116, 066820 (2014).

    Article  CAS  Google Scholar 

  32. Berni, A. et al. Doctor blade. in Sol-Gel Technologies for Glass Producers and Users (eds. Aegerter, M.A. & Mennig, M.) 89–92 (Springer, 2004).

  33. Krebs, F.C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  34. Wengeler, L. et al. Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chem. Eng. Process. 68, 38–44 (2013).

    Article  CAS  Google Scholar 

  35. Ben Osman, C. et al. In situ monitored stretching induced α to β allotropic transformation of flexible poly(vinylidene fluoride)-CoFe2O4 hybrid films: the role of nanoparticles inclusion. Eur. Polym. J. 84, 602–611 (2016).

    Article  CAS  Google Scholar 

  36. Kepler, R.G. & Anderson, R.A. Ferroelectricity in polyvinylidene fluoride. J. Appl. Phys. 49, 1232–1235 (1978).

    Article  CAS  Google Scholar 

  37. Cardoso, V.F. et al. Polymer-based acoustic streaming for improving mixing and reaction times in microfluidic applications. RSC Adv. 4, 4292–4300 (2014).

    Article  CAS  Google Scholar 

  38. Cardoso, V.F. et al. Multilayer spin-coating deposition of poly(vinylidene fluoride) films for controlling thickness and piezoelectric response. Sens. Actuators A: Phys. 192, 76–80 (2013).

    Article  CAS  Google Scholar 

  39. Calvert, P. et al. Piezoresistive sensorsfor smart textiles. in Proc. SPIE Int. Soc. Opt. Eng. Vol. 6524 http://dx.doi.org/10.1117/12.715740 (2007).

  40. Hoffman, J. et al. The standardization of printable materials and direct writing systems. J. Electron. Packag. 135, 011006 (2013).

    Article  CAS  Google Scholar 

  41. Khan, S. et al. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).

    Article  Google Scholar 

  42. Zhang, L. et al. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 24, 436–440 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Faddoul, R. et al. Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater. Sci. Eng. B 177, 1053–1066 (2012).

    Article  CAS  Google Scholar 

  44. Cardoso, V.F. et al. Nonsolvent induced phase separation preparation of poly(vinylidene fluoride-co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties. Mater. Des. 88, 390–397 (2015).

    Article  CAS  Google Scholar 

  45. Ferreira, C.G. et al. Tailoring microstructure and physical properties of poly(vinylidene fluoride–hexafluoropropylene) porous films. J. Mater. Sci. 50, 5047–5058 (2015).

    Article  CAS  Google Scholar 

  46. Cardoso, V.F. et al. Poly(vinylidene fluoride-trifluoroethylene) porous films: tailoring microstructure and physical properties by solvent casting strategies. Soft Mater. 13, 243–253 (2015).

    Article  CAS  Google Scholar 

  47. Cui, Z. et al. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 39, 164–198 (2014).

    Article  CAS  Google Scholar 

  48. Ferreira, J.C.C. et al. Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride) along its binary phase diagram with dimethylformamide. J. Non-Cryst. Solids 412, 16–23 (2015).

    Article  CAS  Google Scholar 

  49. Correia, D.M. et al. Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride). Mater. Des. 92, 674–681 (2016).

    Article  CAS  Google Scholar 

  50. Cardoso, V.F. et al. From superhydrophobic- to superhydrophilic-patterned poly(vinylidene fluoride-co-chlorotrifluoroethylene) architectures as a novel platform for biotechnological applications. J. Polym. Sci. Part B-Polym. Phys. 54, 1802–1810 (2016).

    Article  CAS  Google Scholar 

  51. Ghosh, S.K. et al. Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30, 621–629 (2016).

    Article  CAS  Google Scholar 

  52. Ghosh, S.K. et al. Porous polymer composite membrane based nanogenerator: a realization of self-powered wireless green energy source for smart electronics applications. J. Appl. Phys. 120, 174501 (2016).

    Article  CAS  Google Scholar 

  53. Mahanty, B. et al. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer. Mater. Chem. Phys. 186, 327–332 (2017).

    Article  CAS  Google Scholar 

  54. Ribeiro, C. et al. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B 136, 46–55 (2015).

    Article  CAS  Google Scholar 

  55. Huang, Y.W. et al. Versatile polyvinylidene fluoride hybrid ultrafiltration membranes with superior antifouling, antibacterial and self-cleaning properties for water treatment. J. Colloid Interf. Sci. 505, 38–48 (2017).

    Article  CAS  Google Scholar 

  56. Atchariyawut, S. et al. Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. J. Memb. Sci. 285, 272–281 (2006).

    Article  CAS  Google Scholar 

  57. Salazar, H. et al. Poly(vinylidene fluoride-hexafluoropropylene)/bayerite composite membranes for efficient arsenic removal from water. Mater. Chem. Phys. 183, 430–438 (2016).

    Article  CAS  Google Scholar 

  58. Liu, J. et al. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery. Electrochim. Acta 235, 500–507 (2017).

    Article  CAS  Google Scholar 

  59. Kang, G.D. & Cao, Y.M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes - a review. J. Memb. Sci. 463, 145–165 (2014).

    Article  CAS  Google Scholar 

  60. Liu, F. et al. Progress in the production and modification of PVDF membranes. J. Memb. Sci. 375, 1–27 (2011).

    Article  CAS  Google Scholar 

  61. Tasselli, F. Non-solvent induced phase separation process (NIPS) for membrane preparation in. in Encyclopedia of Membranes. (eds. Drioli, E. & Giorno, L.) 1–3 (Springer, 2015).

  62. Guillen, G.R. et al. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011).

    Article  CAS  Google Scholar 

  63. van deWitte, P. et al. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 117, 1–31 (1996).

    Article  CAS  Google Scholar 

  64. Pesci, A.I. & Freed, K.F. Lattice theory of polymer blends and liquid mixtures: beyond the Flory-Huggins approximation. J. Chem. Phys. 90, 2017–2034 (1989).

    Article  CAS  Google Scholar 

  65. Muthukumar, M. Thermodynamics of polymer solutions. J. Chem. Phys. 85, 4722–4728 (1986).

    Article  CAS  Google Scholar 

  66. Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Loh, Q.L. & Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. B: Rev. 19, 485–502 (2013).

    Article  CAS  Google Scholar 

  68. Correia, D.M. et al. Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog. Org. Coat. 85, 151–158 (2015).

    Article  CAS  Google Scholar 

  69. Qin, D. et al. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Lake, M. et al. Microfluidic device design, fabrication, and testing protocols. Protoc. Exchange http://dx.doi.org/10.1038/protex.2015.069 (2015).

  71. Pinto, V.C. et al. Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities. Micromachines 5, 738–755 (2014).

    Article  Google Scholar 

  72. Carugo, D. et al. Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique. Biomed. Microdevices 18, 1–10 (2016).

    Article  Google Scholar 

  73. Hwang, Y. et al. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuators A 226, 137–142 (2015).

    Article  CAS  Google Scholar 

  74. Ghosh, S.K. et al. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 36, 166–175 (2017).

    Article  CAS  Google Scholar 

  75. Sultana, A. et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring. J. Mater. Chem. B 5, 7352–7359 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Ribeiro, C. et al. Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Sci. Technol. Adv. Mater. 12, 015001 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ribeiro, C. et al. Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater. 8, 274–287 (2010).

    Article  CAS  Google Scholar 

  78. Sencadas, V. et al. Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene fluoride-trifluoroethylene) membranes for biomedical applications. Appl. Phys. A 109, 685–691 (2012).

    Article  CAS  Google Scholar 

  79. Bhardwaj, N. & Kundu, S.C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Lopes, A.C. et al. Effect of filler content on morphology and physical-chemical characteristics of poly(vinylidene fluoride)/NaY zeolite-filled membranes. J. Mater. Sci. 49, 3361–3370 (2014).

    Article  CAS  Google Scholar 

  81. Dias, J.C. et al. Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. J. Mater. Sci. 51, 4442–4450 (2016).

    Article  CAS  Google Scholar 

  82. Maity, K. et al. Two-dimensional piezoelectric MoS2-modulated nanogenerator and nanosensor made of poly(vinlydine fluoride) nanofiber webs for self-powered electronics and robotics. Energy Technol. 5, 234–243 (2017).

    Article  CAS  Google Scholar 

  83. Garain, S. et al. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces 8, 4532–4540 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Prakriti, A. et al. Improved sensitivity of wearable nanogenerators made of electrospun Eu 3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology 27, 495501 (2016).

    Article  CAS  Google Scholar 

  85. Spasova, M. et al. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and anti-biofouling properties. Appl. Surf. Sci. 363, 363–371 (2016).

    Article  CAS  Google Scholar 

  86. Gopal, R. et al. Electrospun nanofibrous filtration membrane. J. Memb. Sci. 281, 581–586 (2006).

    Article  CAS  Google Scholar 

  87. Costa, C.M. et al. Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. J. Mater. Sci. 48, 6833–6840 (2013).

    Article  CAS  Google Scholar 

  88. Agarwal, S. et al. Use of electrospinning technique for biomedical applications. Polymer 49, 5603–5621 (2008).

    Article  CAS  Google Scholar 

  89. Gonçalves, R. et al. Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv. 5, 35852–35857 (2015).

    Article  CAS  Google Scholar 

  90. Correia, D.M. et al. Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv. 4, 33013–33021 (2014).

    Article  CAS  Google Scholar 

  91. Zamani, M. et al. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 8, 2997–3017 (2013).

    Google Scholar 

  92. Ribeiro, C. et al. Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering. Eng. Life Sci. 15, 351–356 (2015).

    Article  CAS  Google Scholar 

  93. Dubois, J.-C. Ferroelectric polymers: Chemistry, Physics, and Applications Vol. 8 (Wiley-VCH, 1996).

  94. Koga, K. & Ohigashi, H. Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. J. Appl. Phys. 59, 2142–2150 (1986).

    Article  CAS  Google Scholar 

  95. Martins, P. et al. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys. Lett. A 373, 177–180 (2009).

    Article  CAS  Google Scholar 

  96. Atkinson, G. & Ounaies, Z. Polymer Microsystems: Materials and Fabrication 2nd edn. (CRC Press, Taylor & Francis Group, 2010).

  97. Lutkenhaus, J.L. et al. Confinement effects on crystallization and curie transitions of poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules 43, 3844–3850 (2010).

    Article  CAS  Google Scholar 

  98. Xu, H. Dielectric properties and ferroelectric behavior of poly(vinylidene fluoride-trifluoroethylene) 50/50 copolymer ultrathin films. J. Appl. Polym. Sci. 80, 2259–2266 (2001).

    Article  CAS  Google Scholar 

  99. Cheng, Z. et al. Electropolymers for mechatronics and artificial muscles, in. Piezoelectric and Acoustic Materials for Transducer Applications 131–159 (2008).

  100. Li, Z. et al. Electromechanical properties of poly(vinylidene-fluoride- chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 88, 062904 (2006).

    Article  CAS  Google Scholar 

  101. Aldas, M. et al. Dielectric behaviour of BaTiO3/P(VDF-HFP) composite thin films prepared by solvent evaporation method. in Proc. 2010 IEEE Int. Conf. Solid Dielectr., ICSD 2010. 5568042.

  102. Künstler, W. et al. Preparation and assessment of piezo- and pyroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer films. Appl. Phys. A 73, 641–645 (2001).

    Article  Google Scholar 

  103. Yan, H. et al. Simultaneous stretching and static electric field poling of poly(vinylidene fluoride-hexafluoropropylene) copolymer films. Polym. Eng. Sci. 47, 1630–1633 (2007).

    Article  CAS  Google Scholar 

  104. Sharma, T. et al. Patterning piezoelectric thin film PVDF-TrFE based pressure sensor for catheter application. Sens. Actuators A 177, 87–92 (2012).

    Article  CAS  Google Scholar 

  105. Martins, P. & Lanceros-Méndez, S. Polymer-based magnetoelectric materials. Adv. Funct. Mater. 23, 3371–3385 (2013).

    Article  CAS  Google Scholar 

  106. Damodar, R.A. et al. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 172, 1321–1328 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Jeschke, S. et al. Study of carbamate-modified disiloxane in porous PVDF-HFP membranes: new electrolytes/separators for lithium-ion batteries. ChemPhysChem 15, 1761–1771 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Martins, P.M. et al. Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv. 3, 17938–17944 (2013).

    Article  CAS  Google Scholar 

  109. Rezaei, M. et al. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. Int. J. Greenhouse Gas Control 26, 147–157 (2014).

    Article  CAS  Google Scholar 

  110. Figoli, A. et al. Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: morphology, properties and VMD performance. Polymer 55, 1296–1306 (2014).

    Article  CAS  Google Scholar 

  111. Geng, H. et al. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nanoscale 6, 3889–3894 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the FCT (Fundação para a Ciência e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2013, UID/EEA/04436/2013 and UID/QUI/0686/2016; and projects PTDC/EEI-SII/5582/2014 and PTDC/CTM-ENE/5387/2014; as well as through FEDER funds from COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI). Funding in the framework of the EuroNanoMed 2016 call, Project LungChek ENMed/0049/2016, is also acknowledged. The authors also thank the FCT for financial support under grants SFRH/BPD/90870/2012 (C.R.), SFRH/BPD/112547/2015 (C.M.C.), SFRH/BPD/121526/2016 (D.M.C.), SFRH/BD/98219/2013 (J.O.), SFRH/BPD/96227/2013 (P.M.) and SFRH/BPD/98109/2013 (V.F.C.). Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including FEDER financial support) and from the Basque Government Industry Department under the ELKARTEK Program is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work, being responsible for the different protocols: P.M. and J.O.: doctor blade and printing; V.F.C.: spin-coating and patterned porous structures; C.M.C. and J.N.-P.: porous films by NIPS and TIPS; C.R. and D.M.C.: 3D scaffolds; D.M.C. and R.G.: fibers and spheres; and S.L.-M.: conceived, designed and supervised the project. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Senentxu Lanceros-Méndez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Optical microscope images of nylon templates used to fabricate PVDF scaffolds.

Optical microscope images of nylon templates for obtaining PVDF scaffolds with pore diameters of a) 60 and b) 150 μm. The scale bar (100 μm) is valid for both images.

Supplementary Figure 2 Optical microscope images of pre-molds used to fabricate patterned porous PVDF structures.

Optical microscope images of: a) SU-8 pre-mold fabricated by photolithography; b) PDMS mold fabricated by replica molding using the SU-8 pre-mold. The scale bar (150 μm) is valid for both images.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Methods. (PDF 689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, C., Costa, C., Correia, D. et al. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13, 681–704 (2018). https://doi.org/10.1038/nprot.2017.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research