Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simultaneous reprogramming and gene editing of human fibroblasts

Abstract

The utility of human induced pluripotent stem cells (iPSCs) is enhanced by an ability to precisely modify a chosen locus with minimal impact on the remaining genome. However, the derivation of gene-edited iPSCs typically involves multiple steps requiring lengthy culture periods and several clonal events. Here, we describe a one-step protocol for reliable generation of clonally derived gene-edited iPSC lines from human fibroblasts in the absence of drug selection or FACS enrichment. Using enhanced episomal-based reprogramming and CRISPR/Cas9 systems, gene-edited and passage-matched unmodified iPSC lines are obtained following a single electroporation of human fibroblasts. To minimize unwanted mutations within the target locus, we use a Cas9 variant that is associated with decreased nonhomologous end-joining (NHEJ) activity. This protocol outlines in detail how this streamlined approach can be used for both monoallelic and biallelic introduction of specific base changes or transgene cassettes in a manner that is efficient, rapid (68 weeks), and cost-effective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDRCas9-Gem facilitates generation of indel-free gene-edited iPSCs.
Figure 2
Figure 3: Generation of MAFP:mTagBFP2 reporter iPSC lines following one-step gene editing/reprogramming of healthy fibroblasts.
Figure 4: Simultaneous reprogramming and genetic correction of fibroblasts from a kidney disease patient with an autosomal dominant mutation in HNF4A.
Figure 5: Generation of iPSC lines with a point mutation in H3F3A following one-step gene editing/reprogramming of healthy fibroblasts.

Similar content being viewed by others

References

  1. Chung, C.Y. et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryan, S.D. et al. Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155, 1351–1364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, Y. et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J. Am. Coll. Cardiol. 64, 451–459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, Y. et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17, 233–244 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Howden, S.E. et al. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports 5, 1109–1118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 110, 15644–15649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwart, D., Paquet, D., Teo, S. & Tessier-Lavigne, M. Precise and efficient scarless genome editing in stem cells using CORRECT. Nat. Protoc. 12, 329–354 (2017).

    CAS  PubMed  Google Scholar 

  12. Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18, 573–586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    CAS  PubMed  Google Scholar 

  14. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A. Structural biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).

    CAS  PubMed  Google Scholar 

  16. Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Canver, M.C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 292, 2556 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Howden, S.E. et al. A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Reports 7, 508–517 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Google Scholar 

  21. Merkle, F.T. et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 11, 875–883 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902–2906 (2008).

    CAS  PubMed  Google Scholar 

  23. Saleh-Gohari, N. & Helleday, T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 32, 3683–3688 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    CAS  PubMed  Google Scholar 

  26. Forsyth, N.R. et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8, 16–23 (2006).

    CAS  PubMed  Google Scholar 

  27. Bai, Q. et al. Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev. 24, 653–662 (2015).

    CAS  PubMed  Google Scholar 

  28. Mahmoudi, S. & Brunet, A. Aging and reprogramming: a two-way street. Curr. Opin. Cell Biol. 24, 744–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Howden, S.E. et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Natl. Acad. Sci. USA 108, 6537–6542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lo Sardo, V. et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35, 69–74 (2017).

    CAS  PubMed  Google Scholar 

  33. Reinhardt, P. et al. Genetic correction of a LRRK2 mutation in human iPSCs links Parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12, 354–367 (2013).

    CAS  PubMed  Google Scholar 

  34. Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    CAS  PubMed  Google Scholar 

  36. Villegas, J. & McPhaul, M. Establishment and culture of human skin fibroblasts. Curr. Protoc. Mol. Biol. Unit 28.23 (2005).

  37. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    CAS  PubMed  Google Scholar 

  38. Thomas, K.R., Folger, K.R. & Capecchi, M.R. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44, 419–428 (1986).

    CAS  PubMed  Google Scholar 

  39. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753–755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    CAS  PubMed  Google Scholar 

  41. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, C. et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12–13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crosetto, N. et al. Nucleotide-resolution DNA double-strand breaks mapping by next-generation sequencing. Nat. Methods 10, 361–365 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS  PubMed  Google Scholar 

  47. Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    CAS  PubMed  Google Scholar 

  48. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    CAS  PubMed  Google Scholar 

  49. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. New Eng. J. Med. 350, 1353–1356 (2004).

    CAS  PubMed  Google Scholar 

  50. Baker, D.E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    CAS  PubMed  Google Scholar 

  51. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  52. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  53. Park, J., Bae, S. & Kim, J.-S. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31, 4014–4016 (2015).

    CAS  PubMed  Google Scholar 

  54. Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Radloff, R., Bauer, W. & Vinograd, J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc. Natl. Acad. Sci. USA 57, 1514–1521 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Subach, O.M., Cranfill, P.J., Davidson, M.W. & Verkhusha, V.V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PLoS One 6, e28674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takasato, M., Er, P.X., Chiu, H.S. & Little, M.H. Generation of kidney organoids from human pluripotent stem cells. Nat. Protoc. 11, 1681–1692 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Mallett, Royal Brisbane and Women's Hospital; C. Patel, Genetic Health Queensland; C. Simons and J. Crawford, University of Queensland; B. Bennetts, G. Ho, and K. Holman, Childrens Hospital Westmead; and A. Nandini and team, Pathology Queensland, acting as part of the KidGen Collaborative; for clinical and genetic evaluation, mutation identification, and recruitment of fibroblasts from RG_0120.153 (patient with HNF4A mutation). This work was supported by the National Institutes of Health (DK107344-01) and the National Health and Medical Research Council (NHMRC; GNT1098654 and GNT1100970). M.H.L. is a Senior Principal Research Fellow of the NHMRC (GNT1042093). The Murdoch Children's Research Institute is supported by the Victorian Government's Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Contributions

S.E.H. and J.A.T. conceived and developed the protocol. S.E.H. prepared the manuscript. J.A.T. and M.H.L. provided supervision and assisted in manuscript preparation.

Corresponding author

Correspondence to Sara E Howden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

ODNs for sgRNA plasmids used in Anticipated Results section. (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howden, S., Thomson, J. & Little, M. Simultaneous reprogramming and gene editing of human fibroblasts. Nat Protoc 13, 875–898 (2018). https://doi.org/10.1038/nprot.2018.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.007

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing