Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Deciphering the divergent roles of progestogens in breast cancer

This article has been updated

Abstract

Most breast cancers are driven by oestrogen receptor-α. Anti-oestrogenic drugs are the standard treatment for these breast cancers; however, treatment resistance is common, necessitating new therapeutic strategies. Recent preclinical and historical clinical studies support the use of progestogens to activate the progesterone receptor (PR) in breast cancers. However, widespread controversy exists regarding the role of progestogens in this disease, hindering the clinical implementation of PR-targeted therapies. Herein, we present and discuss data at the root of this controversy and clarify the confusion and misinterpretations that have consequently arisen. We then present our view on how progestogens may be safely and effectively used in treating breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative anatomy of adult human and mouse mammary gland epithelium.
Figure 2: Endocrine and paracrine interactions in ER+ breast epithelial cell proliferation.
Figure 3: Schematic of PR-mediated reprogramming of ER transcriptional activity.
Figure 4: Hormone receptor status in patients with breast cancer versus models of breast cancer.

Similar content being viewed by others

Change history

  • 30 November 2016

    In this article, the sentence "The T47D-Y derivatives express substantially lower levels of ER than endogenous T47D cells." on page 8 was incorrectly referenced. The correct references are 119 and 135, not 23 and 135. This has been corrected online.

References

  1. Stierer, M. et al. Immunohistochemical and biochemical measurement of estrogen and progesterone receptors in primary breast cancer. Correlation of histopathology and prognostic factors. Ann. Surg. 218, 13–21 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Germain, P., Staels, B., Dacquet, C., Spedding, M. & Laudet, V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58, 685–704 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Musgrove, E. A. & Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Merenbakh-Lamin, K. et al. D538G mutation in estrogen receptor-α: a novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res. 73, 6856–6864 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. Pannuti, F. et al. Prospective, randomized clinical trial of two different high dosages of medroxyprogesterone acetate (MAP) in the treatment of metastatic breast cancer. Eur. J. Cancer 15, 593–601 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. Alexieva-Figusch, J. et al. Progestin therapy in advanced breast cancer: megestrol acetate — an evaluation of 160 treated cases. Cancer 46, 2369–2372 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. Izuo, M., Iino, Y. & Endo, K. Oral high-dose medroxyprogesterone acetate (MAP) in treatment of advanced breast cancer. A preliminary report of clinical and experimental studies. Breast Cancer Res. Treat. 1, 125–130 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. Ingle, J. N. et al. Randomized clinical trial of megestrol acetate versus tamoxifen in paramenopausal or castrated women with advanced breast cancer. Am. J. Clin. Oncol. 5, 155–160 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. Mattsson, W. Current status of high dose progestin treatment in advanced breast cancer. Breast Cancer Res. Treat. 3, 231–235 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. Morgan, L. R. Megestrol acetate v tamoxifen in advanced breast cancer in postmenopausal patients. Semin. Oncol. 12, 43–47 (1985).

    PubMed  CAS  Google Scholar 

  13. Espie, M. Megestrol acetate in advanced breast carcinoma. Oncology 51 (Suppl. 1), 8–12 (1994).

    Article  PubMed  Google Scholar 

  14. Birrell, S. N., Roder, D. M., Horsfall, D. J., Bentel, J. M. & Tilley, W. D. Medroxyprogesterone acetate therapy in advanced breast cancer: the predictive value of androgen receptor expression. J. Clin. Oncol. 13, 1572–1577 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. Muss, H. B. et al. Megestrol acetate versus tamoxifen in advanced breast cancer: 5-year analysis — a phase III trial of the Piedmont Oncology Association. J. Clin. Oncol. 6, 1098–1106 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. Robertson, J. F. et al. Factors predicting the response of patients with advanced breast cancer to endocrine (Megace) therapy. Eur. J. Cancer Clin. Oncol. 25, 469–475 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. Abrams, J. et al. Dose−response trial of megestrol acetate in advanced breast cancer: cancer and leukemia group B phase III study 8741. J. Clin. Oncol. 17, 64–73 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. Bines, J. et al. Activity of megestrol acetate in postmenopausal women with advanced breast cancer after nonsteroidal aromatase inhibitor failure: a phase II trial. Ann. Oncol. 25, 831–836 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Beral, V. et al. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362, 419–427 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Chlebowski, R. T. et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative randomized trial. JAMA 289, 3243–3253 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. Wu, J., Richer, J., Horwitz, K. B. & Hyder, S. M. Progestin-dependent induction of vascular endothelial growth factor in human breast cancer cells: preferential regulation by progesterone receptor B. Cancer Res. 64, 2238–2244 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Liang, Y., Besch-Williford, C., Brekken, R. A. & Hyder, S. M. Progestin-dependent progression of human breast tumor xenografts: a novel model for evaluating antitumor therapeutics. Cancer Res. 67, 9929–9936 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. Faivre, E. J. & Lange, C. A. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol. Cell. Biol. 27, 466–480 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. Lanari, C. et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr. Relat. Cancer 16, 333–350 (2009).

    Article  PubMed  CAS  Google Scholar 

  26. Giulianelli, S. et al. Estrogen receptor alpha mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the Cyclin D1/MYC promoters. Cancer Res. 72, 2416–2427 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Tanos, T. et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci. Transl Med. 5, 182ra155 (2013).

    Article  CAS  Google Scholar 

  28. Dressing, G. E. et al. Progesterone receptor−cyclin D1 complexes induce cell cycle-dependent transcriptional programs in breast cancer cells. Mol. Endocrinol. 28, 442–457 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Carroll, J. S. & Brown, M. Estrogen receptor target gene: an evolving concept. Mol. Endocrinol. 20, 1707–1714 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Kininis, M. & Kraus, W. L. A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl. Recept. Signal. 6, e005 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Peters, A. A. et al. Androgen receptor inhibits estrogen receptor-α activity and is prognostic in breast cancer. Cancer Res. 69, 6131–6140 (2009).

    Article  PubMed  CAS  Google Scholar 

  32. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Daniel, A. R. et al. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene 34, 506–515 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Isikbay, M. et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm. Cancer 5, 72–89 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mohammed, H. et al. Progesterone receptor modulates ERα action in breast cancer. Nature 523, 313–317 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Carreau, S. & Levallet, J. Testicular estrogens and male reproduction. News Physiol. Sci. 15, 195–198 (2000).

    PubMed  CAS  Google Scholar 

  37. Oettel, M. & Mukhopadhyay, A. K. Progesterone: the forgotten hormone in men? Aging Male 7, 236–257 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Graham, J. D. & Clarke, C. L. Physiological action of progesterone in target tissues. Endocr. Rev. 18, 502–519 (1997).

    PubMed  CAS  Google Scholar 

  39. Edwards, D. P. Regulation of signal transduction pathways by estrogen and progesterone. Annu. Rev. Physiol. 67, 335–376 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Horwitz, K. B. & McGuire, W. L. Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J. Biol. Chem. 253, 2223–2228 (1978).

    PubMed  CAS  Google Scholar 

  41. Pichon, M. F., Pallud, C., Brunet, M. & Milgrom, E. Relationship of presence of progesterone receptors to prognosis in early breast cancer. Cancer Res. 40, 3357–3360 (1980).

    PubMed  CAS  Google Scholar 

  42. Ballare, C. et al. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol. Cell. Biol. 23, 1994–2008 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Muscat, G. E. et al. Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol. Endocrinol. 27, 350–365 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Santagata, S. et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J. Clin. Invest. 124, 859–870 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Horwitz, K. B. & McGuire, W. L. Predicting response to endocrine therapy in human breast cancer: a hypothesis. Science 189, 726–727 (1975).

    Article  PubMed  CAS  Google Scholar 

  46. Viale, G. et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J. Clin. Oncol. 25, 3846–3852 (2007).

    Article  PubMed  Google Scholar 

  47. Stanczyk, F. Z., Hapgood, J. P., Winer, S. & Mishell, D. R. Jr. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr. Rev. 34, 171–208 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Del Vecchio, R. P. The role of steroidogenic and nonsteroidogenic luteal cell interactions in regulating progesterone production. Semin. Reprod. Endocrinol. 15, 409–420 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. Chaumeil, J. C. Micronization: a method of improving the bioavailability of poorly soluble drugs. Methods Find. Exp. Clin. Pharmacol. 20, 211–215 (1998).

    PubMed  CAS  Google Scholar 

  50. Hargrove, J. T., Maxson, W. S. & Wentz, A. C. Absorption of oral progesterone is influenced by vehicle and particle size. Am. J. Obstet. Gynecol. 161, 948–951 (1989).

    Article  PubMed  CAS  Google Scholar 

  51. Lauritzen, C. Clinical use of oestrogens and progestogens. Maturitas 12, 199–214 (1990).

    Article  PubMed  CAS  Google Scholar 

  52. Apgar, B. S. & Greenberg, G. Using progestins in clinical practice. Am. Fam. Physician 62, 1839–1846 (2000).

    PubMed  CAS  Google Scholar 

  53. Fournier, A., Berrino, F. & Clavel-Chapelon, F. Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res. Treat. 107, 103–111 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Chlebowski, R. T. et al. Breast cancer after use of estrogen plus progestin in postmenopausal women. N. Engl. J. Med. 360, 573–587 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lyytinen, H. K., Dyba, T., Ylikorkala, O. & Pukkala, E. I. A case−control study on hormone therapy as a risk factor for breast cancer in Finland: intrauterine system carries a risk as well. Int. J. Cancer 126, 483–489 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Manson, J. E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women's Health Initiative randomized trials. JAMA 310, 1353–1368 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Reeves, G. K., Beral, V., Green, J., Gathani, T. & Bull, D. Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. Lancet Oncol. 7, 910–918 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. Dieci, M. V., Orvieto, E., Dominici, M., Conte, P. & Guarneri, V. Rare breast cancer subtypes: histological, molecular, and clinical peculiarities. Oncologist 19, 805–813 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. McCart Reed, A. E., Kutasovic, J. R., Lakhani, S. R. & Simpson, P. T. Invasive lobular carcinoma of the breast: morphology, biomarkers and 'omics. Breast Cancer Res. 17, 12 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Burger, H. G., MacLennan, A. H., Huang, K. E. & Castelo-Branco, C. Evidence-based assessment of the impact of the WHI on women's health. Climacteric 15, 281–287 (2012).

    Article  PubMed  CAS  Google Scholar 

  61. Schernhammer, E. S. et al. Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort. Breast Cancer Res. 15, R46 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Eliassen, A. H. et al. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J. Natl Cancer Inst. 98, 1406–1415 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. Kaaks, R. et al. Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J. Natl Cancer Inst. 97, 755–765 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. Chang, K. J., Lee, T. T., Linares-Cruz, G., Fournier, S. & de Lignieres, B. Influences of percutaneous administration of estradiol and progesterone on human breast epithelial cell cycle in vivo. Fertil. Steril. 63, 785–791 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. Clavel-Chapelon, F. & Dormoy-Mortier, N. A validation study on status and age of natural menopause reported in the E3N cohort. Maturitas 29, 99–103 (1998).

    Article  PubMed  CAS  Google Scholar 

  66. Fournier, A., Berrino, F., Riboli, E., Avenel, V. & Clavel-Chapelon, F. Breast cancer risk in relation to different types of hormone replacement therapy in the E3N−EPIC cohort. Int. J. Cancer 114, 448–454 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Fournier, A. et al. Use of different postmenopausal hormone therapies and risk of histology- and hormone receptor-defined invasive breast cancer. J. Clin. Oncol. 26, 1260–1268 (2008).

    Article  PubMed  Google Scholar 

  68. de Lignieres, B. et al. Combined hormone replacement therapy and risk of breast cancer in a French cohort study of 3,175 women. Climacteric 5, 332–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. Espie, M. et al. Breast cancer incidence and hormone replacement therapy: results from the MISSION study, prospective phase. Gynecol. Endocrinol. 23, 391–397 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. Schneider, C., Jick, S. S. & Meier, C. R. Risk of gynecological cancers in users of estradiol/dydrogesterone or other HRT preparations. Climacteric 12, 514–524 (2009).

    Article  PubMed  CAS  Google Scholar 

  71. Cordina-Duverger, E. et al. Risk of breast cancer by type of menopausal hormone therapy: a case−control study among post-menopausal women in France. PLoS ONE 8, e78016 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fournier, A. et al. Risk of breast cancer after stopping menopausal hormone therapy in the E3N cohort. Breast Cancer Res. Treat. 145, 535–543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lippman, M. E. et al. Indicators of lifetime estrogen exposure: effect on breast cancer incidence and interaction with raloxifene therapy in the multiple outcomes of raloxifene evaluation study participants. J. Clin. Oncol. 19, 3111–3116 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. Asi, N. et al. Progesterone versus synthetic progestins and the risk of breast cancer: a systematic review and meta-analysis. Syst. Rev. 5, 121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Foidart, J. M., Desreux, J., Pintiaux, A. & Gompel, A. Hormone therapy and breast cancer risk. Climacteric 10 (Suppl. 2), 54–61 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. L'Hermite, M., Simoncini, T., Fuller, S. & Genazzani, A. R. Could transdermal estradiol + progesterone be a safer postmenopausal HRT? A review. Maturitas 60, 185–201 (2008).

    Article  PubMed  CAS  Google Scholar 

  77. Gadducci, A., Biglia, N., Cosio, S., Sismondi, P. & Genazzani, A. R. Progestagen component in combined hormone replacement therapy in postmenopausal women and breast cancer risk: a debated clinical issue. Gynecol. Endocrinol. 25, 807–815 (2009).

    Article  PubMed  CAS  Google Scholar 

  78. Mueck, A. O., Seeger, H. & Buhling, K. J. Use of dydrogesterone in hormone replacement therapy. Maturitas 65 (Suppl. 1), S51–S60 (2009).

    PubMed  CAS  Google Scholar 

  79. Wood, C. E. et al. Effects of estradiol with micronized progesterone or medroxyprogesterone acetate on risk markers for breast cancer in postmenopausal monkeys. Breast Cancer Res. Treat. 101, 125–134 (2007).

    Article  PubMed  CAS  Google Scholar 

  80. LaCroix, A. Z. Estrogen with and without progestin: benefits and risks of short-term use. Am. J. Med. 118 (Suppl. 12B), 79–87 (2005).

    Article  PubMed  Google Scholar 

  81. Bentel, J. M. et al. Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells. Mol. Cell. Endocrinol. 154, 11–20 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. Ouatas, T., Halverson, D. & Steeg, P. S. Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor gene expression in metastatic human breast carcinoma cells: new uses for old compounds. Clin. Cancer Res. 9, 3763–3772 (2003).

    PubMed  CAS  Google Scholar 

  83. Birrell, S. N., Butler, L. M., Harris, J. M., Buchanan, G. & Tilley, W. D. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB J. 21, 2285–2293 (2007).

    Article  PubMed  CAS  Google Scholar 

  84. Bonomi, P. et al. Primary hormonal therapy of advanced breast cancer with megestrol acetate: predictive value of estrogen receptor and progesterone receptor levels. Semin. Oncol. 12, 48–54 (1985).

    PubMed  CAS  Google Scholar 

  85. Johnson, P. A. et al. Progesterone receptor level as a predictor of response to megestrol acetate in advanced breast cancer: a retrospective study. Cancer Treat. Rep. 67, 717–720 (1983).

    PubMed  CAS  Google Scholar 

  86. Carpenter, J. T. in Endocrine Therapies in Breast and Prostate Cancer (ed. Osborne, C. K.) 147–156 (Kluwer, 1988).

    Book  Google Scholar 

  87. Sutherland, R. L., Hall, R. E., Pang, G. Y., Musgrove, E. A. & Clarke, C. L. Effect of medroxyprogesterone acetate on proliferation and cell cycle kinetics of human mammary carcinoma cells. Cancer Res. 48, 5084–5091 (1988).

    PubMed  CAS  Google Scholar 

  88. Poulin, R., Baker, D., Poirier, D. & Labrie, F. Androgen and glucocorticoid receptor-mediated inhibition of cell proliferation by medroxyprogesterone acetate in ZR-75-1 human breast cancer cells. Breast Cancer Res. Treat. 13, 161–172 (1989).

    Article  PubMed  CAS  Google Scholar 

  89. Ory, K. et al. Apoptosis inhibition mediated by medroxyprogesterone acetate treatment of breast cancer cell lines. Breast Cancer Res. Treat. 68, 187–198 (2001).

    Article  PubMed  CAS  Google Scholar 

  90. Ochnik, A. M. et al. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo. Menopause 21, 79–88 (2014).

    Article  PubMed  Google Scholar 

  91. Gizard, F. et al. Progesterone inhibits human breast cancer cell growth through transcriptional upregulation of the cyclin-dependent kinase inhibitor p27Kip1 gene. FEBS Lett. 579, 5535–5541 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. Kabos, P. et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res. Treat. 135, 415–432 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. Vignon, F., Bardon, S., Chalbos, D. & Rochefort, H. Antiestrogenic effect of R5020, a synthetic progestin in human breast cancer cells in culture. J. Clin. Endocrinol. Metab. 56, 1124–1130 (1983).

    Article  PubMed  CAS  Google Scholar 

  94. Stingl, J. Estrogen and progesterone in normal mammary gland development and in cancer. Horm. Cancer 2, 85–90 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Beleut, M. et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc. Natl Acad. Sci. USA 107, 2989–2994 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Brisken, C. et al. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl Acad. Sci. USA 95, 5076–5081 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Shoker, B. S. et al. Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am. J. Pathol. 155, 1811–1815 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Russo, J., Ao, X., Grill, C. & Russo, I. H. Pattern of distribution of cells positive for estrogen receptor α and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res. Treat. 53, 217–227 (1999).

    Article  PubMed  CAS  Google Scholar 

  99. De Silva, D., Kunasegaran, K., Ghosh, S. & Pietersen, A. M. Transcriptome analysis of the hormone-sensing cells in mammary epithelial reveals dynamic changes in early pregnancy. BMC Dev. Biol. 15, 7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Virgo, B. B. & Bellward, G. D. Serum progesterone levels in the pregnant and postpartum laboratory mouse. Endocrinology 95, 1486–1490 (1974).

    Article  PubMed  CAS  Google Scholar 

  101. Ewan, K. B. et al. Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am. J. Pathol. 167, 409–417 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mastroianni, M. et al. Wnt signaling can substitute for estrogen to induce division of ERα-positive cells in a mouse mammary tumor model. Cancer Lett. 289, 23–31 (2010).

    Article  PubMed  CAS  Google Scholar 

  103. Fridriksdottir, A. J. et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat. Commun. 6, 8786 (2015).

    Article  PubMed  Google Scholar 

  104. Dontu, G. & Ince, T. A. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation. J. Mammary Gland Biol. Neoplasia 20, 51–62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schramek, D., Sigl, V. & Penninger, J. M. RANKL and RANK in sex hormone-induced breast cancer and breast cancer metastasis. Trends Endocrinol. Metab. 22, 188–194 (2011).

    Article  PubMed  CAS  Google Scholar 

  106. Hiremath, M., Lydon, J. P. & Cowin, P. The pattern of β-catenin responsiveness within the mammary gland is regulated by progesterone receptor. Development 134, 3703–3712 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Graham, J. D. et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 150, 3318–3326 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. McManus, M. J. & Welsch, C. W. The effect of estrogen, progesterone, thyroxine, and human placental lactogen on DNA synthesis of human breast ductal epithelium maintained in athymic nude mice. Cancer 54, 1920–1927 (1984).

    Article  PubMed  CAS  Google Scholar 

  109. Laidlaw, I. J. et al. The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology 136, 164–171 (1995).

    Article  PubMed  CAS  Google Scholar 

  110. Foidart, J. M. et al. Estradiol and progesterone regulate the proliferation of human breast epithelial cells. Fertil. Steril. 69, 963–969 (1998).

    Article  PubMed  CAS  Google Scholar 

  111. Hilton, H. N. et al. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget 5, 8651–8664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. De Maeyer, L. et al. Does estrogen receptor negative/progesterone receptor positive breast carcinoma exist? J. Clin. Oncol. 26, 335–336 (2008).

    Article  PubMed  Google Scholar 

  113. Quong, J. et al. Age-dependent changes in breast cancer hormone receptors and oxidant stress markers. Breast Cancer Res. Treat. 76, 221–236 (2002).

    Article  PubMed  CAS  Google Scholar 

  114. Azim, H. A. Jr. et al. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy. Breast Cancer Res. 17, 24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sanger, N. et al. OPG and PgR show similar cohort specific effects as prognostic factors in ER positive breast cancer. Mol. Oncol. 8, 1196–1207 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Blows, F. M. et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7, e1000279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Purdie, C. A. et al. Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br. J. Cancer 110, 565–572 (2014).

    Article  PubMed  CAS  Google Scholar 

  118. Welsh, A. W. et al. Cytoplasmic estrogen receptor in breast cancer. Clin. Cancer Res. 18, 118–126 (2012).

    Article  PubMed  CAS  Google Scholar 

  119. Singhal, H. et al. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Sci. Adv. 2, e1501924 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Zheng, Z. Y., Bay, B. H., Aw, S. E. & Lin, V. C. A novel antiestrogenic mechanism in progesterone receptor-transfected breast cancer cells. J. Biol. Chem. 280, 17480–17487 (2005).

    Article  PubMed  CAS  Google Scholar 

  121. Swarbrick, A., Lee, C. S., Sutherland, R. L. & Musgrove, E. A. Cooperation of p27Kip1 and p18INK4c in progestin-mediated cell cycle arrest in T-47D breast cancer cells. Mol. Cell. Biol. 20, 2581–2591 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Musgrove, E. A., Swarbrick, A., Lee, C. S., Cornish, A. L. & Sutherland, R. L. Mechanisms of cyclin-dependent kinase inactivation by progestins. Mol. Cell. Biol. 18, 1812–1825 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Prall, O. W., Sarcevic, B., Musgrove, E. A., Watts, C. K. & Sutherland, R. L. Estrogen-induced activation of Cdk4 and Cdk2 during G1−S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E−Cdk2. J. Biol. Chem. 272, 10882–10894 (1997).

    Article  PubMed  CAS  Google Scholar 

  124. Hagan, C. R., Daniel, A. R., Dressing, G. E. & Lange, C. A. Role of phosphorylation in progesterone receptor signaling and specificity. Mol. Cell. Endocrinol. 357, 43–49 (2012).

    Article  PubMed  CAS  Google Scholar 

  125. Hagan, C. R. & Lange, C. A. Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Med. 12, 32 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Musgrove, E. A., Lee, C. S. & Sutherland, R. L. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor α, epidermal growth factor receptor, c-fos, and c-myc genes. Mol. Cell. Biol. 11, 5032–5043 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Groshong, S. D. et al. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, 21 and p27Kip1. Mol. Endocrinol. 11, 1593–1607 (1997).

    Article  PubMed  CAS  Google Scholar 

  128. Chalbos, D. & Rochefort, H. Dual effects of the progestin R5020 on proteins released by the T47D human breast cancer cells. J. Biol. Chem. 259, 1231–1238 (1984).

    PubMed  CAS  Google Scholar 

  129. Hissom, J. R. & Moore, M. R. Progestin effects on growth in the human breast cancer cell line T-47D — possible therapeutic implications. Biochem. Biophys. Res. Commun. 145, 706–711 (1987).

    Article  PubMed  CAS  Google Scholar 

  130. Graham, J. D. et al. Progesterone receptor A and B protein expression in human breast cancer. J. Steroid Biochem. Mol. Biol. 56, 93–98 (1996).

    Article  PubMed  CAS  Google Scholar 

  131. Graham, J. D. et al. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol. Endocrinol. 19, 2713–2735 (2005).

    Article  PubMed  CAS  Google Scholar 

  132. Sartorius, C. A. et al. New T47D breast cancer cell lines for the independent study of progesterone B and A receptors: only antiprogestin-occupied B-receptors are switched to transcriptional agonists by cAMP. Cancer Res. 54, 3868–3877 (1994).

    PubMed  CAS  Google Scholar 

  133. Graham, M. L. 2nd et al. T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance. Cancer Res. 50, 6208–6217 (1990).

    PubMed  CAS  Google Scholar 

  134. Berkenstam, A., Glaumann, H., Martin, M., Gustafsson, J. A. & Norstedt, G. Hormonal regulation of estrogen receptor messenger ribonucleic acid in T47Dco and MCF-7 breast cancer cells. Mol. Endocrinol. 3, 22–28 (1989).

    Article  PubMed  CAS  Google Scholar 

  135. Harvell, D. M., Richer, J. K., Allred, D. C., Sartorius, C. A. & Horwitz, K. B. Estradiol regulates different genes in human breast tumor xenografts compared with the identical cells in culture. Endocrinology 147, 700–713 (2006).

    Article  PubMed  CAS  Google Scholar 

  136. Sartorius, C. A., Shen, T. & Horwitz, K. B. Progesterone receptors A and B differentially affect the growth of estrogen-dependent human breast tumor xenografts. Breast Cancer Res. Treat. 79, 287–299 (2003).

    Article  PubMed  CAS  Google Scholar 

  137. Nadji, M., Gomez-Fernandez, C., Ganjei-Azar, P. & Morales, A. R. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am. J. Clin. Pathol. 123, 21–27 (2005).

    Article  PubMed  Google Scholar 

  138. Hefti, M. M. et al. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res. 15, R68 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Cerliani, J. P. et al. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res. 71, 3720–3731 (2011).

    Article  PubMed  CAS  Google Scholar 

  140. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2009 National Cancer Institute http://seer.cancer.gov/archive/csr/1975_2009_pops09/results_merged/sect_04_breast.pdf (2006).

    Google Scholar 

  141. Howell, A. et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365, 60–62 (2005).

    Article  PubMed  CAS  Google Scholar 

  142. BIG 1–98 Collaborative Group. Letrozole therapy alone or in sequence with tamoxifen in women with breast cancer. N. Engl. J. Med. 361, 766–776 (2009).

  143. Melmon, K. L., Morrelli, H. F. & Carruthers, S. G. Melmon and Morrelli's Clinical Pharmacology: Basic Principles in Therapeutics (McGraw Hill Professional, 2000).

    Google Scholar 

  144. Bardou, V. J., Arpino, G., Elledge, R. M., Osborne, C. K. & Clark, G. M. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J. Clin. Oncol. 21, 1973–1979 (2003).

    Article  PubMed  CAS  Google Scholar 

  145. Stendahl, M. et al. High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. Clin. Cancer Res. 12, 4614–4618 (2006).

    Article  PubMed  CAS  Google Scholar 

  146. Jonat, W. et al. A randomised trial comparing two doses of the new selective aromatase inhibitor anastrozole (Arimidex) with megestrol acetate in postmenopausal patients with advanced breast cancer. Eur. J. Cancer 32A, 404–412 (1996).

  147. Buzdar, A. U. et al. A phase III trial comparing anastrozole (1 and 10 milligrams), a potent and selective aromatase inhibitor, with megestrol acetate in postmenopausal women with advanced breast carcinoma. Arimidex Study Group. Cancer 79, 730–739 (1997).

    Article  PubMed  CAS  Google Scholar 

  148. Buzdar, A. et al. Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J. Clin. Oncol. 19, 3357–3366 (2001).

    Article  PubMed  CAS  Google Scholar 

  149. Partridge, A. H., Wang, P. S., Winer, E. P. & Avorn, J. Nonadherence to adjuvant tamoxifen therapy in women with primary breast cancer. J. Clin. Oncol. 21, 602–606 (2003).

    Article  PubMed  CAS  Google Scholar 

  150. Kligman, L. & Younus, J. Management of hot flashes in women with breast cancer. Curr. Oncol. 17, 81–86 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Makubate, B., Donnan, P. T., Dewar, J. A., Thompson, A. M. & McCowan, C. Cohort study of adherence to adjuvant endocrine therapy, breast cancer recurrence and mortality. Br. J. Cancer 108, 1515–1524 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Loprinzi, C. L. et al. Megestrol acetate for the prevention of hot flashes. N. Engl. J. Med. 331, 347–352 (1994).

    Article  PubMed  CAS  Google Scholar 

  153. Hickey, T. E., Robinson, J. L., Carroll, J. S. & Tilley, W. D. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol. Endocrinol. 26, 1252–1267 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hua, S., Kittler, R. & White, K. P. Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137, 1259–1271 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ross-Innes, C. S. et al. Cooperative interaction between retinoic acid receptor-α and estrogen receptor in breast cancer. Genes Dev. 24, 171–182 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Darro, F. et al. Growth inhibition of human in vitro and mouse in vitro and in vivo mammary tumor models by retinoids in comparison with tamoxifen and the RU-486 anti-progestagen. Breast Cancer Res. Treat. 51, 39–55 (1998).

    Article  PubMed  CAS  Google Scholar 

  157. Vilasco, M. et al. Glucocorticoid receptor and breast cancer. Breast Cancer Res. Treat. 130, 1–10 (2011).

    Article  PubMed  CAS  Google Scholar 

  158. Miranda, T. B. et al. Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer Res. 73, 5130–5139 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. De Amicis, F. et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res. Treat. 121, 1–11 (2010).

    Article  PubMed  CAS  Google Scholar 

  160. Rechoum, Y. et al. AR collaborates with ERα in aromatase inhibitor-resistant breast cancer. Breast Cancer Res. Treat. 147, 473–485 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bardon, S., Vignon, F., Chalbos, D. & Rochefort, H. RU486, a progestin and glucocorticoid antagonist, inhibits the growth of breast cancer cells via the progesterone receptor. J. Clin. Endocrinol. Metab. 60, 692–697 (1985).

    Article  PubMed  CAS  Google Scholar 

  162. Horwitz, K. B. The antiprogestin RU38 486: receptor-mediated progestin versus antiprogestin actions screened in estrogen-insensitive T47Dco human breast cancer cells. Endocrinology 116, 2236–2245 (1985).

    Article  PubMed  CAS  Google Scholar 

  163. Musgrove, E. A., Lee, C. S., Cornish, A. L., Swarbrick, A. & Sutherland, R. L. Antiprogestin inhibition of cell cycle progression in T-47D breast cancer cells is accompanied by induction of the cyclin-dependent kinase inhibitor p21. Mol. Endocrinol. 11, 54–66 (1997).

    Article  PubMed  CAS  Google Scholar 

  164. Klijn, J. G., Setyono-Han, B. & Foekens, J. A. Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65, 825–830 (2000).

    Article  PubMed  CAS  Google Scholar 

  165. Bakker, G. H. et al. Comparison of the actions of the antiprogestin mifepristone (RU486), the progestin megestrol acetate, the LHRH analog buserelin, and ovariectomy in treatment of rat mammary tumors. Cancer Treat. Rep. 71, 1021–1027 (1987).

    PubMed  CAS  Google Scholar 

  166. Michna, H., Schneider, M. R., Nishino, Y. & el Etreby, M. F. Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res. Treat. 14, 275–288 (1989).

    Article  PubMed  CAS  Google Scholar 

  167. Bakker, G. H. et al. Treatment of breast cancer with different antiprogestins: preclinical and clinical studies. J. Steroid Biochem. Mol. Biol. 37, 789–794 (1990).

    Article  PubMed  CAS  Google Scholar 

  168. Iwasaki, K. et al. Effects of antiprogestins on the rate of proliferation of breast cancer cells. Mol. Cell. Biochem. 198, 141–149 (1999).

    Article  PubMed  CAS  Google Scholar 

  169. Perrault, D. et al. Phase II study of the progesterone antagonist mifepristone in patients with untreated metastatic breast carcinoma: a National Cancer Institute of Canada Clinical Trials Group study. J. Clin. Oncol. 14, 2709–2712 (1996).

    Article  PubMed  CAS  Google Scholar 

  170. Jonat, W. et al. Randomized phase II study of lonaprisan as second-line therapy for progesterone receptor-positive breast cancer. Ann. Oncol. 24, 2543–2548 (2013).

    Article  PubMed  CAS  Google Scholar 

  171. Robertson, J. F., Willsher, P. C., Winterbottom, L., Blamey, R. W. & Thorpe, S. Onapristone, a progesterone receptor antagonist, as first-line therapy in primary breast cancer. Eur. J. Cancer 35, 214–218 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. J.S.C is supported by a European Research Council (ERC) Consolidator grant and a Komen Scholar Award. The work of the authors is supported by funding from the National Health and Medical Research Council of Australia (ID 1008349 to W.D.T. and T.E.H.; ID 1084416 to W.D.T., T.E.H. and J.S.C.); Cancer Australia/National Breast Cancer Foundation of Australia (ID 1043497 to W.D.T., T.E.H. and J.S.C.; ID 1107170 to W.D.T., T.E.H. and J.S.C.); the National Breast Cancer Foundation of Australia (PS-15-041 to W D.T. and G.A.T.); and an unrestricted grant from GTx (W.D.T. and T.E.H.). T.E.H held a Fellowship Award from the US Department of Defense Breast Cancer Research Program (BCRP; #W81XWH-11-1-0592) and currently is supported by a Florey Career Development Fellowship from the Royal Adelaide Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason S. Carroll or Wayne D. Tilley.

Ethics declarations

Competing interests

Michael Williams has represented women with legal claims for breast cancer induced by medroxyprogesterone acetate or norethindrone acetate when used as menopausal hormone therapy. The other authors declare no potential competing interests.

PowerPoint slides

Glossary

Aromatase inhibitor

A class of drugs that inhibit the enzyme aromatase (CYP19A1), which converts androgens (testosterone or androstenedione) into oestrogens. By blocking oestrogen synthesis, these compounds inhibit the action of the oestrogen receptor.

Basal cells

Contractile myoepithelial cells that line mammary ducts and possess a reservoir of stem and progenitor cells. Basal cells are thought to function in milk transport at lactation.

ER

In this article, ER specifically refers to oestrogen receptor-α (ERα) There is also an ERβ, which arises from a different gene, but there is considerable controversy regarding the expression and biological role of ERβ in breast cancer. Most of the literature that refers to ER in breast cancer refers to ERα.

Hormone replacement therapy

This therapy (now called menopausal hormone therapy) is used to ameliorate symptoms that arise as a consequence of menopause in which the ovaries are unable to produce sufficient oestrogen and progesterone hormones.

Luminal cells

Secretory cells that reside juxtaposed to basal cells and are composed of two distinct subpopulations: milk-producing alveolar cells and oestrogen receptor (ER)+ and/or progesterone receptor (PR)+ cells. ER+ and PR+ cells respond to endocrine reproductive cues (for example, oestrogen and progesterone) and translate them into paracrine factors that coordinate mammary development during pregnancy.

Micronization

A process by which large particles are broken down into very small particles to increase surface area. In pharmacology, this process can increase the rate of intestinal absorption of oral drugs. Progesterone is one example of a drug that is not well absorbed unless micronized.

Microstructures

A collection of cells that retain anatomical structure that accurately reflects their site of origin.

PR-A and PR-B

The progesterone receptor (PR) exists in two isoforms, PR-A and PR-B, that are produced from the same gene. PR-B has the same protein sequence as PR-A, but with an additional region termed the 'activation function 3′ at the amino terminus of the protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, J., Hickey, T., Tarulli, G. et al. Deciphering the divergent roles of progestogens in breast cancer. Nat Rev Cancer 17, 54–64 (2017). https://doi.org/10.1038/nrc.2016.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.116

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer