Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Tissue, cell and stage specificity of (epi)mutations in cancers

Abstract

Most (epi)mutations in cancers are specific to particular tumours or occur at specific stages of development, cell differentiation or tumorigenesis. Simple molecular mechanisms, such as tissue-restricted gene expression, seem to explain these associations only in rare cases. Instead, the specificity of (epi)mutations is probably due to the selection of a restricted spectrum of genetic changes by the cellular environment. In some cases, the resulting functional defects might be constrained to be neither too strong nor too weak for tumour growth to occur; that is, they lie within a 'window' that is permissive for tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of activating KRAS2 mutations in different tumour types.
Figure 2: PU.1 expression and acute myeloid leukaemia — a permissive 'window' for tumorigenesis.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  2. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→A mutations in colorectal tumors. Nature Genet. 30, 227–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Ann. Rev. Genet. 38, 445–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, W. H. et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235, 1394–1399 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Patel, S. D., Chen, C. P., Bahna, F., Honig, B. & Shapiro, L. Cadherin-mediated cell–cell adhesion: sticking together as a family. Curr. Opin. Struct. Biol. 13, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Becker, K. F. et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54, 3845–3852 (1994).

    CAS  PubMed  Google Scholar 

  8. Berx, G. et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 13, 1919–1925 (1996).

    CAS  PubMed  Google Scholar 

  9. Ilyas, M., Tomlinson, I. P., Rowan, A., Pignatelli, M. & Bodmer, W. F. β-catenin mutations in cell lines established from human colorectal cancers. Proc. Natl Acad. Sci. USA 94, 10330–10334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwao, K. et al. Activation of the β-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res. 58, 1021–1026 (1998).

    CAS  PubMed  Google Scholar 

  11. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).

    CAS  PubMed  Google Scholar 

  12. Huang, H. et al. APC mutations in sporadic medulloblastomas. Am. J. Pathol. 156, 433–437 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zurawel, R. H., Chiappa, S. A., Allen, C. & Raffel, C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res. 58, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  14. Dahmen, R. P. et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res. 61, 7039–7043 (2001).

    CAS  PubMed  Google Scholar 

  15. Fukuchi, T. et al. β-catenin mutation in carcinoma of the uterine endometrium. Cancer Res. 58, 3526–3528 (1998).

    CAS  PubMed  Google Scholar 

  16. Kobayashi, K., Sagae, S., Nishioka, Y., Tokino, T. & Kudo, R. Mutations of the β-catenin gene in endometrial carcinomas. Jpn J. Cancer Res. 90, 55–59 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koch, A. et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res. 59, 269–273 (1999).

    CAS  PubMed  Google Scholar 

  18. Wei, Y. et al. Activation of β-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498–504 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003).

    Article  CAS  Google Scholar 

  20. Price, C. H. Primary bone-forming tumours and their relationship to skeletal growth. J. Bone Joint Surg. Br. 40-B, 574–593 (1958).

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Park, W. S. et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 59, 307–310 (1999).

    CAS  PubMed  Google Scholar 

  23. Ma, P. C. et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 63, 6272–6281 (2003).

    CAS  PubMed  Google Scholar 

  24. McCoy, M. L., Mueller, C. R. & Roskelley, C. D. The role of the breast cancer susceptibility gene 1 (BRCA1) in sporadic epithelial ovarian cancer. Reprod. Biol. Endocrinol. 1, 72 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Merg, A. & Howe, J. R. Genetic conditions associated with intestinal juvenile polyps. Am. J. Med. Genet. C. Semin. Med. Genet. 129, 44–55 (2004).

    Article  Google Scholar 

  26. Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, e332 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1–28 (2004).

    Article  PubMed  Google Scholar 

  28. Fenske, T. S. et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc. Natl Acad. Sci. USA 101, 15184–15189 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan, Y. et al. AML1–ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl Acad. Sci. USA 98, 10398–10403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan, T. L., Zhao, W., Leung, S. Y. & Yuen, S. T. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res. 63, 4878–4881 (2003).

    CAS  PubMed  Google Scholar 

  31. Yin, J. et al. p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology 104, 1633–1639 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Miyaki, M. et al. Frequent mutation of β-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res. 59, 4506–4509 (1999).

    CAS  PubMed  Google Scholar 

  33. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  34. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tuveson, D. A. et al. Endogenous oncogenic K-ras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Guidi, C. J., Veal, T. M., Jones, S. N. & Imbalzano, A. N. Transcriptional compensation for loss of an allele of the Ini1 tumor suppressor. J. Biol. Chem. 279, 4180–4185 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Dugast-Darzacq, C., Pirity, M., Blanck, J. K., Scherl, A. & Schreiber-Agus, N. Mxi1-SRα: a novel Mxi1 isoform with enhanced transcriptional repression potential. Oncogene 23, 8887–8899 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Attisano, L. & Wrana, J. L. Signal transduction by the TGF-β superfamily. Science 296, 1646–1647 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Erickson, G. F., Fuqua, L. & Shimasaki, S. Analysis of spatial and temporal expression patterns of bone morphogenetic protein family members in the rat uterus over the estrous cycle. J. Endocrinol. 182, 203–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reversibility of acute B-cell leukaemia induced by BCR–ABL1. Nature Genet. 24, 57–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249–3262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isaacson, P. G. & Du, M. Q. MALT lymphoma: from morphology to molecules. Nature Rev. Cancer 4, 644–653 (2004).

    Article  CAS  Google Scholar 

  46. Du, M. Q. & Isaccson, P. G. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol. 3, 97–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. von Knebel Doeberitz, M., Rittmuller, C., zur Hausen, H. & Durst, M. Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int. J. Cancer 51, 831–834 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. von Knebel Doeberitz, M., Rittmuller, C., Aengeneyndt, F., Jansen-Durr, P. & Spitkovsky, D. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6–p53 and E7–pRB interactions. J. Virol. 68, 2811–2821 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaelin, W. G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nature Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  50. Narod, S. A. Modifiers of risk of hereditary breast and ovarian cancer. Nature Rev. Cancer 2, 113–123 (2002).

    Article  Google Scholar 

  51. Sieber, O. M., Tomlinson, I. P. & Lamlum, H. The adenomatous polyposis coli (APC) tumour suppressor - genetics, function and disease. Mol. Med. Today 6, 462–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Friedrich, C. A. Genotype–phenotype correlation in von Hippel–Lindau syndrome. Hum. Mol. Genet. 10, 763–767 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Hao, X. P. et al. The spectrum of p53 mutations in colorectal adenomas differs from that in colorectal carcinomas. Gut 50, 834–839 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guerrero, S. et al. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 60, 6750–6756 (2000).

    CAS  PubMed  Google Scholar 

  55. Guerrero, S. et al. Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. Faseb J. 16, 1642–1644 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Provost, E. et al. Functional correlates of mutations in β-catenin exon 3 phosphorylation sites. J. Biol. Chem. 278, 31781–31789 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Lamlum, H. et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's 'two-hit' hypothesis. Nature Med. 5, 1071–1075 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Albuquerque, C. et al. The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the β-catenin signaling cascade. Hum. Mol. Genet. 11, 1549–1560 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Crabtree, M. et al. Refining the relation between 'first hits' and 'second hits' at the APC locus: the 'loose fit' model and evidence for differences in somatic mutation spectra among patients. Oncogene 22, 4257–4265 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rowan, A. J. et al. APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'. Proc. Natl Acad. Sci. USA 97, 3352–3357 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Spirio, L. N. et al. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nature Genet. 20, 385–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Su, L. K. et al. Inactivation of germline mutant APC alleles by attenuated somatic mutations: a molecular genetic mechanism for attenuated familial adenomatous polyposis. Am. J. Hum. Genet. 67, 582–590 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Groves, C. et al. Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am. J. Pathol. 160, 2055–2061 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong, A. J. et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 89, 2965–2969 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C. & Maki, R. A. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61, 113–124 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. DeKoter, R. P., Walsh, J. C. & Singh, H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. Embo J. 17, 4456–4468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Scott, E. W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6, 437–447 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbauer, F. et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genet. 36, 624–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Muleris, M., Dutrillaux, A. M., Olschwang, S., Salmon, R. J. & Dutrillaux, B. Predominance of normal karyotype in colorectal tumors from hereditary non-polyposis colorectal cancer patients. Genes Chromosomes Cancer 14, 223–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Lipton, L. et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 63, 7595–7599 (2003).

    CAS  PubMed  Google Scholar 

  72. Abdel-Rahman, W. M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl Acad. Sci. USA 98, 2538–2543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones, A. M. et al. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 24, 118–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Komarova, N. L. Mathematical modeling of tumorigenesis: mission possible. Curr. Opin. Oncol. 17, 39–43 (2005).

    Article  PubMed  Google Scholar 

  75. Shibutani, S. et al. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Richard Poulsom and Richard Houlston for critical comments on this manuscript, and to Gavin Kelly for assistance with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver M. Sieber or Ian P. M. Tomlinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

APC

BRCA1

BRCA2

KRAS

MXI1

MYH

Sfpi1

TP53

National Cancer institute

breast cancer

colorectal cancer

acute myeloid

leukaemia

lymphoma

pancreatic cancer

FURTHER INFORMATION

COSMIC database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieber, O., Tomlinson, S. & Tomlinson, I. Tissue, cell and stage specificity of (epi)mutations in cancers. Nat Rev Cancer 5, 649–655 (2005). https://doi.org/10.1038/nrc1674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing