Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer stem cells in solid tumours: accumulating evidence and unresolved questions

Key Points

  • The cancer stem cell (CSC) hypothesis is an attractive model to account for the functional heterogeneity that is commonly observed in solid tumours. It proposes a hierarchical organization of cells within the tumour, in which a subpopulation of stem-like cells is responsible for sustaining tumour growth.

  • The first evidence for CSCs came from acute myeloid leukaemia. There is now increasing evidence for CSCs in a variety of solid tumours (both mouse and human), provided through transplantation studies using prospectively isolated tumour cells.

  • The frequency of CSCs in solid tumours is highly variable, reflecting biological variation as well as technical issues. Technical issues include the purity of solid tumour cell fractionation, the requirement for more definitive markers and the challenges associated with xenotransplantation. Ultimately it will be necessary to study CSCs and potential heterogeneity within this population at a clonal level through 'cell tagging'.

  • Not all solid tumours will follow the CSC model of heterogeneity. Some may conform to the clonal evolution model, in which a dominant population of proliferating cells drives tumorigenesis.

  • Metastatic CSCs may exist, with properties distinct from primary CSCs.

  • The concept of CSCs has significant clinical implications: CSCs have been shown to be more resistant to chemotherapy and radiotherapy.

  • Recent reports, primarily for haematopoietic malignancies, suggest that CSCs can be selectively targeted without ablating normal stem cell function.

Abstract

Solid tumours are an enormous cancer burden and a major therapeutic challenge. The cancer stem cell (CSC) hypothesis provides an attractive cellular mechanism to account for the therapeutic refractoriness and dormant behaviour exhibited by many of these tumours. There is increasing evidence that diverse solid tumours are hierarchically organized and sustained by a distinct subpopulation of CSCs. Direct evidence for the CSC hypothesis has recently emerged from mouse models of epithelial tumorigenesis, although alternative models of heterogeneity also seem to apply. The clinical relevance of CSCs remains a fundamental issue but preliminary findings indicate that specific targeting may be possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models for tumour heterogeneity and propagation.
Figure 2: Evolution of a metastatic cancer stem cell (CSC).
Figure 3: Ex vivo and in vivo assays for tumour cells.
Figure 4: Reciprocal interactions between the cancer stem cell (CSC) and its microenvironment or niche.

Similar content being viewed by others

References

  1. Heppner, G. H. & Miller, B. E. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev. 2, 5–23 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Southam, C. M. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer 14, 971–978 (1961).

    Article  Google Scholar 

  3. Furth, J. & Kahn, M. C. The transmission of leukemia in mice with a single cell. Am J. Cancer 31, 276–282 (1937).

    Google Scholar 

  4. Hewitt, H. B. Studies of the dissemination and quantitative transplantation of a lymphocytic leukaemia of CBA mice. Br. J. Cancer 12, 378–401 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976). A seminal paper describing the clonal evolution of tumour cell populations involving stepwise selection of cells through the acquisition of genetic changes.

    Article  CAS  PubMed  Google Scholar 

  9. Campbell, L. L. & Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6, 2332–2338 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007). This study reveals that leukaemia stem cells have the potential to evolve with time from a primitive cell type to one containing rearranged immunoglobulin H genes. One implication of this work is that CSCs themselves may be subject to clonal evolution.

    Article  CAS  PubMed  Google Scholar 

  12. Clark, E. A., Golub, T. R., Lander, E. S. & Hynes, R. O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL–AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, W. et al. Malignant transformation initiated by MllAF9: gene dosage and critical target cells. Cancer Cell 13, 432–440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003). This paper provides the first description of the prospective purification of tumour-initiating cells from a solid malignancy, breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004). The first demonstration of CSCs in brain tumours through the use of CD133 for prospective isolation.

    Article  CAS  PubMed  Google Scholar 

  21. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Beier, D. et al. CD133+ and CD133 glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010–4015 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006). These studies reveal that CSCs in gliomas appear to have different properties from the bulk of the population. Reference 24 shows that they are more radioresistant and reference 25 demonstrates that they are responsive to BMP-induced differentiation.

    Article  CAS  PubMed  Google Scholar 

  26. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007). These findings support the concept of a distinct metastatic CSC with important implications for designing drugs that specifically target the metastatic CSC.

    Article  CAS  PubMed  Google Scholar 

  29. Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 97, 14720–14725 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, A. et al. Isolation of neural stem cells from the postnatal cerebellum. Nature Neurosci. 8, 723–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Oshima, Y. et al. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132, 720–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 104, 10158–10163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wright, M. H. et al. Brca1 breast tumors contain distinct CD44+/CD24 and CD133 cells with cancer stem cell characteristics. Breast Cancer Res. 10, R10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008). This study reveals that expression of the CSC marker and drug transporter protein ABCB5 in melanoma correlates with clinical progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kern, S. E. & Shibata, D. The fuzzy math of solid tumor stem cells: a perspective. Cancer Res. 67, 8985–8988 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Bonnefoix, T., Bonnefoix, P., Verdiel, P. & Sotto, J. J. Fitting limiting dilution experiments with generalized linear models results in a test of the single-hit Poisson assumption. J. Immunol. Methods 194, 113–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Zeppernick, F. et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res. 14, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Patrawala, L. et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696–1708 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Patrawala, L. et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res. 65, 6207–6219 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Neering, S. J. et al. Leukemia stem cells in a genetically defined murine model of blast-crisis CML. Blood 110, 2578–2585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007). This paper has challenged the CSC hypothesis, following the observation that three mouse models of leukaemia and lymphoma are maintained by a dominant cell population. The authors posit that xenotransplantation may select for tumour cells capable of surviving in a foreign environment.

    Article  CAS  PubMed  Google Scholar 

  46. Cho, R. W. et al. Isolation and molecular characterization of cancer stem cells in MMTV–Wnt-1 murine breast tumors. Stem Cells 26, 364–371 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Vaillant, F., Asselin-Labat, M. L., Shackleton, M., Lindeman, G. J. and Visvader, J. E. The mammary progenitor marker CD61/b3integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res. (in the press).

  48. Zhang, M. et al. Identification of tumor-initiating cells in a p53 null mouse model of breast cancer. Cancer Res. 68, 4674–4682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008). References 46–49 provide definitive evidence for the existence of CSCs in syngeneic mouse models of mammary and skin tumorigenesis. They further suggest that normal stem and progenitor markers have utility in the identification and isolation of CSCs.

    Google Scholar 

  50. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  51. Mani, S. A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl Acad. Sci. USA 104, 10069–10074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Light, R. W., Erozan, Y. S. & Ball, W. C. Jr. Cells in pleural fluid. Their value in differential diagnosis. Arch. Intern. Med. 132, 854–860 (1973).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133 and CD133 metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Carpenter, G. & Cohen, S. Epidermal growth factor. Annu. Rev. Biochem. 48, 193–216 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Rifkin, D. B. & Moscatelli, D. Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol. 109, 1–6 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA 101, 4966–4971 (2004). This study represents an important step in establishing humanized mouse models for solid tumours, demonstrating that a species-specific stromal niche is important for the growth of human epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gupta, P. B. et al. Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res. 67, 2062–2071 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nature Immunol. 8, 1313–1323 (2007).

    Article  CAS  Google Scholar 

  63. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mehta, R. R., Graves, J. M., Hart, G. D., Shilkaitis, A. & Das Gupta, T. K. Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res. Treat. 25, 65–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Henson, B. et al. An orthotopic floor-of-mouth model for locoregional growth and spread of human squamous cell carcinoma. J. Oral Pathol. Med. 36, 363–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Prokhorova, T. A. et al. Teratoma formation by human embryonic stem cells is site-dependent and enhanced by the presence of Matrigel. Stem Cells Dev. 7 Apr 2008 (doi:10.1089/scd.2007.0266).

  70. Marshall, G. P. 2nd, Reynolds, B. A. & Laywell, E. D. Using the neurosphere assay to quantify neural stem cells in vivo. Curr. Pharm. Biotechnol. 8, 141–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Reynolds, B. A. & Rietze, R. L. Neural stem cells and neurospheres — re-evaluating the relationship. Nature Meth. 2, 333–336 (2005). The sphere assay, originally developed for neural cells, has formed an important basis for the development of an in vitro assay to study both normal stem and progenitor cells and tumour-initiating cells in a variety of solid tumours including brain (reference 73) and breast (reference 78).

    Article  CAS  Google Scholar 

  72. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clement, V., Sanchez, P., de Tribolet, N., Radovanovic, I. & Ruiz i Altaba, A. HEDGEHOG–GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol. 3, 268–273 (2007).

    Article  CAS  Google Scholar 

  76. Beier, D. et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 68, 5706–5715 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  Google Scholar 

  80. Ito, K. et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453, 1072–1078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Guzman, M. L. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F. & Dick, J. E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Med. 12, 1167–1174 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. Krause, D. S., Lazarides, K., von Andrian, U. H. & Van Etten, R. A. Requirement for CD44 in homing and engraftment of BCR–ABL-expressing leukemic stem cells. Nature Med. 12, 1175–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007). This study and reference 21 suggest that CSCs in tumours are maintained by an aberrant vascular niche and that glioblastoma CSCs have potent angiogenic activity.

    Article  CAS  PubMed  Google Scholar 

  88. Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67, 3560–3564 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blazek, E. R., Foutch, J. L. & Maki, G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133 cells, and the CD133+ sector is enlarged by hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 67, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst. 98, 1777–1785 (2006).

    Article  PubMed  Google Scholar 

  92. Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA 104, 618–623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-Hajj, M. Cancer stem cells and oncology therapeutics. Curr. Opin. Oncol. 19, 61–64 (2007).

    PubMed  Google Scholar 

  94. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 672–679 (2008). References 77 and 94 provide evidence for a subpopulation of chemotherapy-resistant cancer-initiating cells in breast cancer patients.

    Article  CAS  PubMed  Google Scholar 

  95. Shafee, N. et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 68, 3243–3250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dylla, S. J. et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3, e2428 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Johnstone, R. W., Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93, 1075–1085 (1999).

    CAS  PubMed  Google Scholar 

  99. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    CAS  PubMed  Google Scholar 

  100. Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  103. Kleinsmith, L. J. & Pierce, G. B., Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24, 1544–1551 (1964).

    CAS  PubMed  Google Scholar 

  104. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19, 1432–1437 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pardal, R., Molofsky, A. V., He, S. & Morrison, S. J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol. 70, 177–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. He, X. C., Zhang, J. & Li, L. Cellular and molecular regulation of hematopoietic and intestinal stem cell behavior. Ann. N. Y. Acad. Sci. 1049, 28–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Haramis, A. P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. He, X. C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nature Genet. 36, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Ming Kwan, K., Li, A. G., Wang, X. J., Wurst, W. & Behringer, R. R. Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis 39, 10–25 (2004).

    Article  PubMed  CAS  Google Scholar 

  113. Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA 103, 3799–3804 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mizrak, D., Brittan, M. & Alison, M. R. CD133: molecule of the moment. J. Pathol. 214, 3–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, C. et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res. 67, 8216–8222 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely apologize to those authors whose papers we could not cite owing to space constraints. We are grateful to J. Adams for discussions and P. Maltezos for expert help with the figures. This work was supported by the Victorian Breast Cancer Research Consortium and the National Health and Medical Research Council (Australia). We also acknowledge support from the National Breast Cancer Foundation (Australia), the Susan G. Komen Breast Cancer Foundation, the US Department of Defense, the Australian Stem Cell Centre and the Australian Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Visvader.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colon cancer

ependymomas

glioblastoma multiforme

glioma

lung cancer

medulloblastoma

melanoma

ovarian cancer

pancreatic carcinoma

prostate cancer

teratoma

National Cancer Institute Drug Dictionary

bevacizumab

cisplatin

cyclophosphamide

doxorubicin

epirubicin

gemcitabine

rapamycin

temozolomide

verapamil

FURTHER INFORMATION

J. E. Visvader's homepage

G. J. Lindeman's homepage

Glossary

Tumour xenograft

Owing to the limited amount of tumour material it is necessary to establish xenografts. This involves limited passaging of the tumour, preferably in an orthotopic location, in immunocompromised mice such as NOD-SCID strains. The validity of using xenografts has been documented for many different tumour types. The engraftment rate can be variable, dependent on the tumour type.

Non-adherent sphere

Both normal and cancerous cells from numerous organs can be expanded as non-adherent sphere-like cellular aggregates in serum-free media containing EGF and FGF2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visvader, J., Lindeman, G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8, 755–768 (2008). https://doi.org/10.1038/nrc2499

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing