Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The genesis and evolution of high-grade serous ovarian cancer

Abstract

Germline mutation in either BRCA1 or BRCA2 is associated with an increased risk of ovarian cancer, particularly the most common invasive histotype — serous carcinoma. In addition, serous ovarian cancers have an unusually high frequency of other molecular events involving BRCA pathway dysfunction. Recent findings show a high frequency of TP53 mutation, chromosomal instability, distinct molecular subtypes and DNA copy number-driven changes in gene expression. These findings suggest a model in which homologous recombination repair deficiency initiates a cascade of molecular events that sculpt the evolution of high-grade serous ovarian cancer and dictate its response to therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Type I and Type II serous ovarian cancers.
Figure 2: Model outlining the stages of the initiation and progression of high-grade serous ovarian cancer.

Similar content being viewed by others

References

  1. Stewart, B. W. & Kleihues, P. World Cancer Report. (IARC Press, 2003).

    Google Scholar 

  2. Bast, R. C. Jr, Hennessy, B. & Mills, G. B. The biology of ovarian cancer: new opportunities for translation. Nature Rev. Cancer 9, 415–428 (2009).

    Article  CAS  Google Scholar 

  3. Jass, J. R. Colorectal cancer: a multipathway disease. Crit. Rev. Oncog. 12, 273–287, (2006).

    Article  Google Scholar 

  4. Silverberg, S. G. Histopathologic grading of ovarian carcinoma: a review and proposal. Int. J. Gynecol. Pathol. 19, 7–15 (2000).

    Article  CAS  Google Scholar 

  5. Lee, K. R. & Young, R. H. The distinction between primary and metastatic mucinous carcinomas of the ovary: gross and histologic findings in 50 cases. Am. J. Surg. Pathol. 27, 281–292 (2003).

    Article  Google Scholar 

  6. Zorn, K. K. et al. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin. Cancer Res. 11, 6422–6430 (2005).

    Article  CAS  Google Scholar 

  7. Schwartz, D. R. et al. Novel candidate targets of β-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. Cancer Res. 63, 2913–2922 (2003).

    CAS  PubMed  Google Scholar 

  8. Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article  CAS  Google Scholar 

  9. Kobel, M. et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 5, e232 (2008).

    Article  Google Scholar 

  10. Vang, R., Shih Ie, M. & Kurman, R. J. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 16, 267–282 (2009).

    Article  Google Scholar 

  11. Lee, Y. et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J. Pathol. 211, 26–35 (2007).

    Article  CAS  Google Scholar 

  12. Lee, Y. et al. Advances in the recognition of tubal intraepithelial carcinoma: applications to cancer screening and the pathogenesis of ovarian cancer. Adv. Anat. Pathol. 13, 1–7 (2006).

    Article  Google Scholar 

  13. Folkins, A. K. et al. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol. Oncol. 109, 168–173 (2008).

    Article  CAS  Google Scholar 

  14. Crum, C. P. et al. Lessons from BRCA: the tubal fimbria emerges as an origin for pelvic serous cancer. Clin. Med. Res. 5, 35–44 (2007).

    Article  Google Scholar 

  15. Tone, A. A. et al. Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin. Cancer Res. 14, 4067–4078 (2008).

    Article  CAS  Google Scholar 

  16. Marquez, R. T. et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin. Cancer Res. 11, 6116–6126 (2005).

    Article  CAS  Google Scholar 

  17. Kindelberger, D. W. et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am. J. Surg. Pathol. 31, 161–169 (2007).

    Article  Google Scholar 

  18. Ahmed, A. A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 221, 49–56 (2010).

    Article  CAS  Google Scholar 

  19. Risch, H. A. et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst. 98, 1694–1706 (2006).

    Article  CAS  Google Scholar 

  20. Venkitaraman, A. R. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu. Rev. Pathol. 4, 461–487 (2009).

    Article  CAS  Google Scholar 

  21. Geisler, J. P., Hatterman-Zogg, M. A., Rathe, J. A. & Buller, R. E. Frequency of BRCA1 dysfunction in ovarian cancer. J. Natl Cancer Inst. 94, 61–67 (2002).

    Article  CAS  Google Scholar 

  22. Hilton, J. L. et al. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J. Natl Cancer Inst. 94, 1396–1406 (2002).

    Article  CAS  Google Scholar 

  23. Lim, S. L. et al. Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br. J. Cancer 98, 1452–1456 (2008).

    Article  CAS  Google Scholar 

  24. Wang, Z., Li, M., Lu, S., Zhang, Y. & Wang, H. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol. Ther. 5, 256–260 (2006).

    Article  CAS  Google Scholar 

  25. D'Andrea, A. D. The Fanconi Anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers. Cell Cycle 2, 290–292 (2003).

    CAS  PubMed  Google Scholar 

  26. Press, J. Z. et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 8, 17 (2008).

    Article  Google Scholar 

  27. Jazaeri, A. A. et al. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J. Natl Cancer Inst. 94, 990–1000 (2002).

    Article  CAS  Google Scholar 

  28. Patel, K. J. et al. Involvement of BRCA2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  Google Scholar 

  29. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  Google Scholar 

  30. Norquist, B. M. et al. The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations. Cancer 27 July 2010 (doi:10.1002/cncr.25439).

  31. Xian, W. et al. The Li-Fraumeni syndrome (LFS): a model for the initiation of p53 signatures in the distal Fallopian tube. J. Pathol. 220, 17–23 (2010).

    Article  CAS  Google Scholar 

  32. Levanon, K. et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29, 1103–1113 (2010).

    Article  CAS  Google Scholar 

  33. Williamson, E. A. et al. BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27Kip1. Oncogene 25, 1391–1399 (2006).

    Article  CAS  Google Scholar 

  34. Williamson, E. A., Dadmanesh, F. & Koeffler, H. P. BRCA1 transactivates the cyclin-dependent kinase inhibitor p27Kip1. Oncogene 21, 3199–3206 (2002).

    Article  CAS  Google Scholar 

  35. Hughes-Davies, L. et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115, 523–535 (2003).

    Article  CAS  Google Scholar 

  36. Etemadmoghadam, D. et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin. Cancer Res. 15, 1417–1427 (2009).

    Article  CAS  Google Scholar 

  37. Gorringe, K. L. et al. Genome-wide survey of copy number associations in ovarian cancer. PLoS ONE (in the press).

  38. Gorringe, K. L. & Campbell, I. G. Large-scale genomic analysis of ovarian carcinomas. Mol. Oncol. 3, 157–164 (2009).

    Article  CAS  Google Scholar 

  39. Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2007).

    Article  CAS  Google Scholar 

  40. Haverty, P. M., Hon, L. S., Kaminker, J. S., Chant, J. & Zhang, Z. High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors. BMC Med. Genomics 2, 21 (2009).

    Article  Google Scholar 

  41. Natrajan, R. et al. Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin. Cancer Res. 15, 2711–2722 (2009).

    Article  CAS  Google Scholar 

  42. Kobayashi, S. Basal-like subtype of breast cancer: a review of its unique characteristics and their clinical significance. Breast Cancer 15, 153–158 (2008).

    Article  Google Scholar 

  43. Manie, E. et al. High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors. Cancer Res. 69, 663–671 (2009).

    Article  CAS  Google Scholar 

  44. Holstege, H. et al. High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res. 69, 3625–3633 (2009).

    Article  CAS  Google Scholar 

  45. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009).

    Article  CAS  Google Scholar 

  46. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  47. Lee, H. et al. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, BRCA2. Mol. Cell 4, 1–10 (1999).

    Article  CAS  Google Scholar 

  48. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  49. van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Rev. Cancer 10, 301–309 (2010).

    Article  CAS  Google Scholar 

  50. Loeb, K. R. et al. A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8, 35–47 (2005).

    Article  CAS  Google Scholar 

  51. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  Google Scholar 

  52. Flanagan, J. M. et al. DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am. J. Hum. Genet. 86, 420–433 (2010).

    Article  CAS  Google Scholar 

  53. Collins, F. S. & Barker, A. D. Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci. Am. 296, 50–57 (2007).

    Article  CAS  Google Scholar 

  54. The International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  55. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  Google Scholar 

  56. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    Article  CAS  Google Scholar 

  57. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    Article  CAS  Google Scholar 

  58. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  Google Scholar 

  59. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer 4, 814–819 (2004).

    Article  CAS  Google Scholar 

  60. Fong, P. C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  Google Scholar 

  61. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  Google Scholar 

  62. Gelmon, K. A. et al. Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J. Clin. Oncol. Abstr. 28, 3002 (2010).

    Article  Google Scholar 

  63. Silver, D. P. et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28, 1145–1153 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Critical feedback during the drafting of this article by the following colleagues was much appreciated: A. Ahmed, K. Alsop, P. Cowin, D. Etemadmoghadam, A. DeFazio, D. Huntsman, J. Sambrook and C. Stewart.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David D. L. Bowtell's homepage

International Cancer Genome Consortium

The Cancer Genome Atlas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowtell, D. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer 10, 803–808 (2010). https://doi.org/10.1038/nrc2946

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2946

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer