Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term neprilysin inhibition — implications for ARNIs

This article has been updated

Key Points

  • The approval of LCZ696 for the treatment of heart failure with reduced ejection fraction is the first for chronic neprilysin inhibitor therapy

  • Neprilysin contributes to the formation and degradation of many bioactive peptides and, therefore, chronic neprilysin inhibitor therapy has not only potential benefits but also potential adverse effects

  • By inhibiting the degradation of bradykinin and other inflammatory peptides, neprilysin inhibitor therapy might promote angio-oedema, bronchoconstriction, and inflammation, and might promote cancer by inhibiting the degradation of mitogenic peptides

  • Neprilysin might have a role in metabolizing amyloid-β peptides and by inhibiting amyloid-β degradation, neprilysin inhibition might predispose to diseases related to amyloid-β deposition such as Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy

  • Neprilysin inhibition might also predispose to late-onset sensorimotor axonal polyneuropathy

  • Evidence suggesting potential adverse consequences of chronic neprilysin inhibition come mostly from animal models and whether this evidence applies to humans is unknown; nevertheless, we need to be vigilant in the use of chronic neprilysin inhibitor therapy

Abstract

Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor–neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of neprilysin inhibition on natriuretic peptides.
Figure 2: Effect of neprilysin inhibition on the kallikrein–kinin system.
Figure 3: Action of ARNIs on the renin–angiotensin–aldosterone system.

Similar content being viewed by others

Change history

  • 02 February 2017

    In the version of this article initially published online, reference 203 was incorrect. The error has been corrected for the HTML, PDF, and print versions of the article.

References

  1. Campbell, D. J. Vasopeptidase inhibition: a double-edged sword? Hypertension 41, 383–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Elsner, D., Müntze, A., Kromer, E. P. & Riegger, G. A. J. Effectiveness of endopeptidase inhibition (candoxatril) in congestive heart failure. Am. J. Cardiol. 70, 494–498 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Bevan, E. G. et al. Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J. Hypertens. 10, 607–613 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Favrat, B. et al. Neutral endopeptidase versus angiotensin converting enzyme inhibition in essential hypertension. J. Hypertens. 13, 797–804 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Kentsch, M. et al. Neutral endopeptidase 24.11 inhibition may not exhibit beneficial haemodynamic effects in patients with congestive heart failure. Eur. J. Clin. Pharmacol. 51, 269–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kostis, J. B. et al. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment versus Enalapril (OCTAVE) trial. Am. J. Hypertens. 17, 103–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Unger, E. F. Approval letter — US Food and Drug Administration. FDA http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2015/207620Orig1s000ltr.pdf (2015).

  8. McMurray, J. J. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. McMurray, J. J. et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur. J. Heart Fail. 15, 1062–1073 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vardeny, O., Miller, R. & Solomon, S. D. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2, 663–670 (2014).

    Article  PubMed  Google Scholar 

  11. McKie, P. M. & Burnett, J. C. Jr. Rationale and therapeutic opportunities for natriuretic peptide system augmentation in heart failure. Curr. Heart Fail. Rep. 12, 7–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Minguet, J., Sutton, G., Ferrero, C., Gomez, T. & Bramlage, P. LCZ696: a new paradigm for the treatment of heart failure? Expert Opin. Pharmacother. 16, 435–446 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Hubers, S. A. & Brown, N. J. Combined angiotensin receptor antagonism and neprilysin inhibition. Circulation 133, 1115–1124 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vodovar, N. et al. Neprilysin, cardiovascular, and Alzheimer's diseases: the therapeutic split? Eur. Heart J. 36, 902–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Feldman, A. M., Haller, J. A. & DeKosky, S. T. Valsartan/Sacubitril for heart failure: reconciling disparities between preclinical and clinical investigations. JAMA 315, 25–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Higuchi, Y. et al. Mutations in MME cause an autosomal-recessive Charcot–Marie–Tooth disease type 2. Ann. Neurol. 79, 659–672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Auer-Grumbach, M. et al. Rare variants in MME, encoding metalloprotease neprilysin, are linked to late-onset autosomal-dominant axonal polyneuropathies. Am. J. Hum. Genet. 99, 607–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Depondt, C. et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol. Genet. 2, e94 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whyteside, A. R. & Turner, A. J. Human neprilysin-2 (NEP2) and NEP display distinct subcellular localisations and substrate preferences. FEBS Lett. 582, 2382–2386 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Turner, A. J., Brown, C. D., Carson, J. A. & Barnes, K. The neprilysin family in health and disease. Adv. Exp. Med. Biol. 477, 229–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Carpentier, M. et al. Reduced fertility in male mice deficient in the zinc metallopeptidase NL1. Mol. Cell. Biol. 24, 4428–4437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roques, B. P., Noble, F., Daugé, V., Fournié-Zaluski, M.-C. & Beaumont, A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45, 87–146 (1993).

    CAS  PubMed  Google Scholar 

  23. Shipp, M. A. et al. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (“enkephalinase”): direct evidence by cDNA transfection analysis. Proc. Natl Acad. Sci. USA 86, 297–301 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tran-Paterson, R., Boileau, G., Giguere, V. & Letarte, M. Comparative levels of CALLA/neutral endopeptidase on normal granulocytes, leukemic cells, and transfected COS-1 cells. Blood 76, 775–782 (1990).

    CAS  PubMed  Google Scholar 

  25. Kenny, A. J. Endopeptidase-24.11: putative substrates and possible roles. Biochem. Soc. Trans. 21, 663–668 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Shipp, M. A. et al. CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung. Proc. Natl Acad. Sci. USA 88, 10662–10666 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rose, C., Voisin, S., Gros, C., Schwartz, J. C. & Ouimet, T. Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochem. J. 363, 697–705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonvouloir, N., Lemieux, N., Crine, P., Boileau, G. & DesGroseillers, L. Molecular cloning, tissue distribution, and chromosomal localization of MMEL2, a gene coding for a novel human member of the neutral endopeptidase-24.11 family. DNA Cell Biol. 20, 493–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Roques, B. P. et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286–288 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Turner, A. J. & Murphy, L. J. Molecular pharmacology of endothelin converting enzymes. Biochem. Pharmacol. 51, 91–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Kukkola, P. J. et al. Differential structure–activity relationships of phosphoramidon analogues for inhibition of three metalloproteases: endothelin-converting enzyme, neutral endopeptidase, and angiotensin-converting enzyme. J. Cardiovasc. Pharmacol. 26 (Suppl. 3), S65–S68 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Loffler, B. M. Endothelin-converting enzyme inhibitors: current status and perspectives. J. Cardiovasc. Pharmacol. 35, S79–S82 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Northridge, D. B. et al. Effects of UK 69 578: a novel atriopeptidase inhibitor. Lancet 334, 591–593 (1989).

    Article  Google Scholar 

  34. Levin, E. R., Gardner, D. G. & Samson, W. K. Natriuretic peptides. N. Engl. J. Med. 339, 321–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Zois, N. E. et al. Natriuretic peptides in cardiometabolic regulation and disease. Nat. Rev. Cardiol. 11, 403–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Kerkela, R., Ulvila, J. & Magga, J. Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J. Am. Heart Assoc. 4, e002423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuhn, M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol. Rev. 96, 751–804 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Bhoola, K. D., Figueroa, C. D. & Worthy, K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80 (1992).

    CAS  PubMed  Google Scholar 

  39. Regoli, D., Plante, G. E. & Gobeil, F. Jr. Impact of kinins in the treatment of cardiovascular diseases. Pharmacol. Ther. 135, 94–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Hillmeister, P. et al. Arteriogenesis is modulated by bradykinin receptor signaling. Circ. Res. 109, 524–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Bralet, J. et al. Diuretic and natriuretic responses in rats treated with enkephalinase inhibitors. Eur. J. Pharmacol. 179, 57–64 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Stasch, J. P., Hirth-Dietrich, C., Ganten, D. & Wegner, M. Renal and antihypertensive effects of neutral endopeptidase inhibition in transgenic rats with an extra renin gene. Am. J. Hypertens. 9, 795–802 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Campbell, D. J. et al. Effects of neutral endopeptidase inhibition and combined angiotensin converting enzyme and neutral endopeptidase inhibition on angiotensin and bradykinin peptides in rats. J. Pharmacol. Exp. Ther. 287, 567–577 (1998).

    CAS  PubMed  Google Scholar 

  44. Abassi, Z. A., Tate, J. E., Golomb, E. & Keiser, H. R. Role of neutral endopeptidase in the metabolism of endothelin. Hypertension 20, 89–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Smits, G. J., McGraw, D. E. & Trapani, A. J. Interaction of ANP and bradykinin during endopeptidase 24.11 inhibition: renal effects. Am. J. Physiol. Renal Physiol. 258, F1417–F1424 (1990).

    Article  CAS  Google Scholar 

  46. Ura, N. et al. The role of kinins and atrial natriuretic peptide on the renal effects of neutral endopeptidase inhibitor in rats. Clin. Exp. Hypertens. 16, 799–808 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Helin, K., Tikkanen, I., Hohenthal, U. & Fyhrquist, F. Inhibition of either angiotensin-converting enzyme or neutral endopeptidase induces both enzymes. Eur. J. Pharmacol. 264, 135–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Jardine, A. G. et al. The atriopeptidase inhibitor UK 69,578 increases atrial natriuretic factor and causes a natriuresis in normal humans. Am. J. Hypertens. 3, 661–667 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Ferro, C. J., Spratt, J. C., Haynes, W. G. & Webb, D. J. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation 97, 2323–2330 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Gros, C. et al. Protection of atrial natriuretic factor against degradation: diuretic and natriuretic responses after in vivo inhibition of enkephalinase (EC 3.4.24.11) by acetorphan. Proc. Natl Acad. Sci. USA 86, 7580–7584 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmitt, F. et al. Acute renal effects of neutral endopeptidase inhibition in humans. Am. J. Physiol. Renal Physiol. 267, F20–F27 (1994).

    Article  CAS  Google Scholar 

  52. Richards, A. M. et al. Prolonged inhibition of endopeptidase 24.11 in normal man: renal, endocrine and haemodynamic effects. J. Hypertens. 9, 955–962 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. O'Connell, J. E., Jardine, A. G., Davies, D. L., McQueen, J. & Connell, J. M. Renal and hormonal effects of chronic inhibition of neutral endopeptidase (EC 3.4.24.11) in normal man. Clin. Sci. (Lond.) 85, 19–26 (1993).

    Article  CAS  Google Scholar 

  54. Ando, S., Rahman, M. A., Butler, G. C., Senn, B. L. & Floras, J. S. Comparison of candoxatril and atrial natriuretic factor in healthy men. Effects on hemodynamics, sympathetic activity, heart rate variability, and endothelin. Hypertension 26, 1160–1166 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Seymour, A. A. et al. Possible regulation of atrial natriuretic factor by neutral endopeptidase 24.11 and clearance receptors. J. Pharmacol. Exp. Ther. 256, 1002–1009 (1991).

    CAS  PubMed  Google Scholar 

  56. Monopoli, A., Ongini, E., Cigola, E. & Olivetti, G. The neutral endopeptidase inhibitor, SCH 34826, reduces left ventricular hypertrophy in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 20, 496–504 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Roksnoer, L. C. et al. Optimum AT1 receptor-neprilysin inhibition has superior cardioprotective effects compared with AT1 receptor blockade alone in hypertensive rats. Kidney Int. 88, 109–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Takeda, Y. et al. Effects of chronic neutral endopeptidase inhibition in rats with cyclosporine-induced hypertension. J. Hypertens. 18, 927–933 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Richards, A. M. et al. Acute inhibition of endopeptidase 24.11 in essential hypertension: SCH 34826 enhances atrial natriuretic peptide and natriuresis without lowering blood pressure. J. Cardiovasc. Pharmacol. 20, 735–741 (1992).

    CAS  PubMed  Google Scholar 

  60. Richards, A. M. et al. Endopeptidase 24.11 inhibition by SCH 42495 in essential hypertension. Hypertension 22, 119–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Richards, A. M., Crozier, I. G., Espiner, E. A., Yandle, T. G. & Nicholls, M. G. Plasma brain natriuretic peptide and endopeptidase 24.11 inhibition in hypertension. Hypertension 22, 231–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Richards, A. M. et al. Chronic inhibition of endopeptidase 24.11 in essential hypertension: evidence for enhanced atrial natriuretic peptide and angiotensin II. J. Hypertens. 11, 407–416 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Barber, M. N., Kanagasundaram, M., Anderson, C. R., Burrell, L. M. & Woods, R. L. Vascular neutral endopeptidase inhibition improves endothelial function and reduces intimal hyperplasia. Cardiovasc. Res. 71, 179–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kugiyama, K. et al. Suppression of atherosclerotic changes in cholesterol-fed rabbits treated with an oral inhibitor of neutral endopeptidase 24.11 (EC 3.4.24.11). Arterioscler. Thromb. Vasc. Biol. 16, 1080–1087 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Grantham, J. A. et al. Modulation of functionally active endothelin-converting enzyme by chronic neutral endopeptidase inhibition in experimental atherosclerosis. Circulation 101, 1976–1981 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Goodman, O. B. Jr et al. Neprilysin inhibits angiogenesis via proteolysis of fibroblast growth factor-2. J. Biol. Chem. 281, 33597–33605 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Winter, R. J., Zhao, L., Krausz, T. & Hughes, J. M. Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia. Am. Rev. Respir. Dis. 144, 1342–1346 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Stewart, A. G., Sheedy, W., Thompson, J. S. & Morice, A. H. Effects of SCH 34826, a neutral endopeptidase inhibitor, on hypoxic pulmonary vascular remodelling. Pulm. Pharmacol. 5, 111–114 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Klinger, J. R. et al. Neutral endopeptidase inhibition attenuates development of hypoxic pulmonary hypertension in rats. J. Appl. Physiol. 75, 1615–1623 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Thompson, J. S., Sheedy, W. & Morice, A. H. Effects of the neutral endopeptidase inhibitor, SCH 42495, on the cardiovascular remodelling secondary to chronic hypoxia in rats. Clin. Sci. (Lond.) 87, 109–114 (1994).

    Article  CAS  Google Scholar 

  71. Schriefer, J. A., Broudy, E. P. & Hassen, A. H. Endopeptidase inhibitors decrease myocardial ischemia/reperfusion injury in an in vivo rabbit model. J. Pharmacol. Exp. Ther. 278, 1034–1039 (1996).

    CAS  PubMed  Google Scholar 

  72. Yang, X. P., Liu, Y. H., Peterson, E. & Carretero, O. A. Effect of neutral endopeptidase 24.11 inhibition on myocardial ischemia/reperfusion injury: the role of kinins. J. Cardiovasc. Pharmacol. 29, 250–256 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Piedimonte, G., Nadel, J. A., Long, C. S. & Hoffman, J. I. E. Neutral endopeptidase in the heart: neutral endopeptidase inhibition prevents isoproterenol-induced myocardial hypoperfusion in rats by reducing bradykinin degradation. Circ. Res. 75, 770–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida, K., Yasujima, M., Casley, D. J. & Johnston, C. I. Effect of chronic neutral endopeptidase inhibition on cardiac hypertrophy after experimental myocardial infarction. Jpn Circ. J. 62, 680–686 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Duncan, A. M. et al. Interaction between neutral endopeptidase and angiotensin converting enzyme inhibition in rats with myocardial infarction: effects on cardiac hypertrophy and angiotensin and bradykinin peptide levels. J. Pharmacol. Exp. Ther. 289, 295–303 (1999).

    CAS  PubMed  Google Scholar 

  76. Cavero, P. G. et al. Cardiorenal actions of neutral endopeptidase inhibition in experimental congestive heart failure. Circulation 82, 196–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Seymour, A. A. et al. Systemic hemodynamics, renal function and hormonal levels during inhibition of neutral endopeptidase 3.4.24.11 and angiotensin-converting enzyme in conscious dogs with pacing-induced heart failure. J. Pharmacol. Exp. Ther. 266, 872–883 (1993).

    CAS  PubMed  Google Scholar 

  78. Rademaker, M. T. et al. Neutral endopeptidase inhibition: augmented atrial and brain natriuretic peptide, haemodynamic and natriuretic responses in ovine heart failure. Clin. Sci. (Lond.) 91, 283–291 (1996).

    Article  CAS  Google Scholar 

  79. Margulies, K. B., Barclay, P. L. & Burnett, J. C. Jr. The role of neutral endopeptidase in dogs with evolving congestive heart failure. Circulation 91, 2036–2042 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Martin, F. L. et al. Natriuretic and antialdosterone actions of chronic oral NEP inhibition during progressive congestive heart failure. Kidney Int. 67, 1723–1730 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Mishima, T. et al. Effects of chronic neutral endopeptidase inhibition on the progression of left ventricular dysfunction and remodeling in dogs with moderate heart failure. Cardiovasc. Drugs Ther. 16, 209–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Willenbrock, R., Scheuermann, M., Höhnel, K., Luft, F. C. & Dietz, R. Acute and chronic neutral endopeptidase inhibition in rats with aortocaval shunt. Hypertension 27, 1259–1266 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Munzel, T. et al. Neurohormonal inhibition and hemodynamic unloading during prolonged inhibition of ANF degradation in patients with severe chronic heart failure. Circulation 86, 1089–1098 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. McDowell, G. et al. The effect of the neutral endopeptidase inhibitor drug, candoxatril, on circulating levels of two of the most potent vasoactive peptides. Br. J. Clin. Pharmacol. 43, 329–332 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huttenrauch, M. et al. Neprilysin deficiency alters the neuropathological and behavioral phenotype in the 5XFAD mouse model of Alzheimer's disease. J. Alzheimers Dis. 44, 1291–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Walther, T. et al. Improved learning and memory in aged mice deficient in amyloid ß-degrading neutral endopeptidase. PLoS ONE 4, e4590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Salles, G., Rodewald, H. R., Chin, B. S., Reinherz, E. L. & Shipp, M. A. Inhibition of CD10/neutral endopeptidase 24.11 promotes B-cell reconstitution and maturation in vivo. Proc. Natl Acad. Sci. USA 90, 7618–7622 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wayman, C. P., Baxter, D., Turner, L., Van Der Graaf, P. H. & Naylor, A. M. UK-414,495, a selective inhibitor of neutral endopeptidase, potentiates pelvic nerve-stimulated increases in female genital blood flow in the anaesthetized rabbit. Br. J. Pharmacol. 160, 51–59 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dussaule, J. C. et al. Inhibition of neutral endopeptidase stimulates renal sodium excretion in patients with chronic renal failure. Clin. Sci. (Lond.) 84, 31–39 (1993).

    Article  CAS  Google Scholar 

  90. Lipkin, G. W., Thuraisingham, R., Dawnay, A. B. S., Harwood, S. M. & Raine, A. E. G. Acute reversal of cyclosporine nephrotoxicity by neutral endopeptidase inhibition in stable renal transplant recipients. Transplantation 64, 1007–1017 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Wolfensberger, T. J. et al. Evidence for a new role of natriuretic peptides: control of intraocular pressure. Br. J. Ophthalmol. 78, 446–448 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hamza, H., Ben Khalifa, H., Baumer, P., Berard, H. & Lecomte, J. M. Racecadotril versus placebo in the treatment of acute diarrhoea in adults. Aliment. Pharmacol. Ther. 13 (Suppl. 6), 15–19 (1999).

    CAS  PubMed  Google Scholar 

  93. Packer, M. et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation 106, 920–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Armstrong, P. W., Lorell, B. H., Nissen, S. & Borer, J. Omapatrilat. Circulation 106, e9011–e9012 (2002).

    Article  PubMed  Google Scholar 

  95. Benz, J. R. et al. Valsartan and hydrochlorothiazide in patients with essential hypertension. A multiple dose, double-blind, placebo controlled trial comparing combination therapy with monotherapy. J. Hum. Hypertens. 12, 861–866 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Hunyady, L. & Catt, K. J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 20, 953–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Wadei, H. M. & Textor, S. C. The role of the kidney in regulating arterial blood pressure. Nat. Rev. Nephrol. 8, 602–609 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Karnik, S. S. et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol. Rev. 67, 754–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Good, J. M. et al. Elevated plasma endothelin concentrations in heart failure; an effect of angiotensin II? Eur. Heart J. 15, 1634–1640 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Moreau, P. et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy — reversal by ETA-receptor antagonist. Circulation 96, 1593–1597 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Richards, A. M. et al. Effect of inhibition of endopeptidase 24.11 on responses to angiotensin II in human volunteers. Circ. Res. 71, 1501–1507 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Jones, E. S., Vinh, A., McCarthy, C. A., Gaspari, T. A. & Widdop, R. E. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol. Ther. 120, 292–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Peluso, A. A., Santos, R. A., Unger, T. & Steckelings, U. M. The angiotensin type 2 receptor and the kidney. Curr. Opin. Nephrol. Hypertens. http://dx.doi.org/10.1097/MNH.0000000000000289 (2016).

  104. Padia, S. H., Howell, N. L., Siragy, H. M. & Carey, R. M. Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor-blocked rat. Hypertension 47, 537–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Koid, S. S., Ziogas, J. & Campbell, D. J. Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 63, 768–773 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Abassi, Z. A., Kelly, G., Golomb, E., Klein, H. & Keiser, H. R. Losartan improves the natriuretic response to ANF in rats with high-output heart failure. J. Pharmacol. Exp. Ther. 268, 224–230 (1994).

    CAS  PubMed  Google Scholar 

  107. Campbell, D. J., Krum, H. & Esler, M. D. Losartan increases bradykinin levels in hypertensive humans. Circulation 111, 315–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Jalowy, A., Schulz, R., Dorge, H., Behrends, M. & Heusch, G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J. Am. Coll. Cardiol. 32, 1787–1796 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Sato, M. et al. Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: Implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation 102 (Suppl. 3), III-346–III-351 (2000).

    CAS  Google Scholar 

  110. Messadi-Laribi, E. et al. Tissue kallikrein is involved in the cardioprotective effect of AT1-receptor blockade in acute myocardial ischemia. J. Pharmacol. Exp. Ther. 323, 210–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Cruden, N. L., Witherow, F. N., Webb, D. J., Fox, K. A. & Newby, D. E. Bradykinin contributes to the systemic hemodynamic effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Arterioscler. Thromb. Vasc. Biol. 24, 1043–1048 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Ménard, J., Campbell, D. J., Azizi, M. & Gonzales, M.-F. Synergistic effects of ACE inhibition and Ang II antagonism on blood pressure, cardiac weight, and renin in spontaneously hypertensive rats. Circulation 96, 3072–3078 (1997).

    Article  PubMed  Google Scholar 

  113. Ferrario, C. M., Chappell, M. C., Dean, R. H. & Iyer, S. N. Novel angiotensin peptides regulate blood pressure, endothelial function, and natriuresis. J. Am. Soc. Nephrol. 9, 1716–1722 (1998).

    CAS  PubMed  Google Scholar 

  114. Trask, A. J. & Ferrario, C. M. Angiotensin-(1–7): pharmacology and new perspectives in cardiovascular treatments. Cardiovasc. Drug Rev. 25, 162–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Ferrario, C. M., Chappell, M. C., Tallant, E. A., Brosnihan, K. B. & Diz, D. I. Counterregulatory actions of angiotensin-(1–7). Hypertension 30, 535–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Campbell, D. J. in Angiotensin II Receptor Antagonists (eds Epstein, M. & Brunner, H. R.) 9–27 (Hanley and Belfus, 2001).

    Google Scholar 

  117. Loot, A. E. et al. Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105, 1548–1550 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Kedzierski, R. M. & Yanagisawa, M. Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41, 851–876 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Ksander, G. M. et al. Dicarboxylic acid dipeptide neutral endopeptidase inhibitors. J. Med. Chem. 38, 1689–1700 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Gu, J. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J. Clin. Pharmacol. 50, 401–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Criscione, L. et al. Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br. J. Pharmacol. 110, 761–771 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brown, P. C. Center for Drug Evaluation and Research. Application Number: 207620Orig1s000. Pharmacology Review. FDA http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207620Orig1s000PharmR.pdf (2015).

    Google Scholar 

  123. US Food and Drug Administration. Entresto prescribing information. FDA http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207620Orig1s000lbl.pdf (2015).

  124. Müller, P. et al. Angiotensin II receptor blockade with single doses of valsartan in healthy, normotensive subjects. Eur. J. Clin. Pharmacol. 47, 231–245 (1994).

    Article  PubMed  Google Scholar 

  125. Langenickel, T. H. et al. The effect of LCZ696 (sacubitril/valsartan) on amyloid-beta concentrations in cerebrospinal fluid in healthy subjects. Br. J. Clin. Pharmacol. 81, 878–890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kobalava, Z. et al. Pharmacodynamic and pharmacokinetic profiles of sacubitril/valsartan (LCZ696) in patients with heart failure and reduced ejection fraction. Cardiovasc. Ther. 34, 191–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Ruilope, L. M. et al. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375, 1255–1266 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Roksnoer, L. C. et al. Blood pressure-independent renoprotection in diabetic rats treated with AT1 receptor-neprilysin inhibition compared with AT1 receptor blockade alone. Clin. Sci. (Lond.) 130, 1209–1220 (2016).

    Article  CAS  Google Scholar 

  129. Hegde, L. G. et al. Concomitant angiotensin AT1 receptor antagonism and neprilysin inhibition produces omapatrilat-like antihypertensive effects without promoting tracheal plasma extravasation in the rat. J. Cardiovasc. Pharmacol. 57, 495–504 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Kusaka, H. et al. LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am. J. Hypertens. 28, 1409–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Kario, K. et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension 63, 698–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Solomon, S. D. et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380, 1387–1395 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. von Lueder, T. G. et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ. Heart Fail. 8, 71–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Suematsu, Y. et al. LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice. Eur. J. Heart Fail. 18, 386–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Bai, H. Y. et al. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage. Eur. J. Pharmacol. 762, 293–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Lu, B. et al. The control of microvascular permeability and blood pressure by neutral endopeptidase. Nat. Med. 3, 904–907 (1997).

    Article  CAS  PubMed  Google Scholar 

  137. Nussberger, J. et al. Plasma bradykinin in angio-oedema. Lancet 351, 1693–1697 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Nussberger, J., Cugno, M. & Cicardi, M. Bradykinin-mediated angioedema. N. Engl. J. Med. 347, 621–622 (2002).

    Article  PubMed  Google Scholar 

  139. Sulpizio, A. C. et al. Mechanism of vasopeptidase inhibitor-induced plasma extravasation: comparison of omapatrilat and the novel neutral endopeptidase 24.11/angiotensin-converting enzyme inhibitor GW796406. J. Pharmacol. Exp. Ther. 315, 1306–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Fryer, R. M. et al. Effect of bradykinin metabolism inhibitors on evoked hypotension in rats: rank efficacy of enzymes associated with bradykinin-mediated angioedema. Br. J. Pharmacol. 153, 947–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Dahlof, B. et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359, 995–1003 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Dickstein, K. & Kjekshus, J. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Lancet 360, 752–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 145–153 (2000).

  144. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker versus diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 288, 2981–2997 (2002).

  145. Pfeffer, M. A. et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N. Engl. J. Med. 349, 1893–1906 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Duncan, A.-M. et al. Kinins in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R897–R904 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Campbell, D. J. The kallikrein–kinin system in humans. Clin. Exp. Pharmacol. Physiol. 28, 1060–1065 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Rubinstein, I., Muns, G. & Zucker, I. H. Plasma exudation in conscious dogs with experimental heart failure. Basic Res. Cardiol. 89, 487–498 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Koehne, P., Schaper, C., Graf, K. & Kunkel, G. Neutral endopeptidase 24.11: its physiologic and possibly pathophysiologic role in inflammation with special effect on respiratory inflammation. Allergy 53, 1023–1042 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Stimler-Gerard, N. P. Neutral endopeptidase-like enzyme controls the contractile activity of substance P in guinea pig lung. J. Clin. Invest. 79, 1819–1825 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dusser, D. J., Nadel, J. A., Sekizawa, K., Graf, P. D. & Borson, D. B. Neutral endopeptidase and angiotensin converting enzyme inhibitors potentiate kinin-induced contraction of ferret trachea. J. Pharmacol. Exp. Ther. 244, 531–536 (1988).

    CAS  PubMed  Google Scholar 

  152. Dusser, D. J., Djokic, T. D., Borson, D. B. & Nadel, J. A. Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J. Clin. Invest. 84, 900–906 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheung, D. et al. Neutral endopeptidase activity and airway hyperresponsiveness to neurokinin A in asthmatic subjects in vivo. Am. Rev. Respir. Dis. 148, 1467–1473 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Crimi, N. et al. Inhibition of neutral endopeptidase potentiates bronchoconstriction induced by neurokinin A in asthmatic patients. Clin. Exp. Allergy 24, 115–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  155. Crimi, N. et al. Effect of an inhaled neutral endopeptidase inhibitor, phosphoramidon, on baseline airway calibre and bronchial responsiveness to bradykinin in asthma. Thorax 50, 505–510 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Diamant, Z., Van der Veen, H., Kuijpers, E. A. P., Bakker, P. F. & Sterk, P. J. The effect of inhaled thiorphan on allergen-induced airway responses in asthmatic subjects. Clin. Exp. Allergy 26, 525–532 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. de Gouw, H. W., Diamant, Z., Kuijpers, E. A., Sont, J. K. & Sterk, P. J. Role of neutral endopeptidase in exercise-induced bronchoconstriction in asthmatic subjects. J. Appl. Physiol. 81, 673–678 (1996).

    Article  CAS  PubMed  Google Scholar 

  158. Angus, R. M., McCallum, M. J., Nally, J. E. & Thomson, N. C. No effect of the oral neutral endopeptidase inhibitor candoxatril, on bronchomotor tone and histamine reactivity in asthma. Eur. Respir. J. 7, 1084–1089 (1994).

    CAS  PubMed  Google Scholar 

  159. Fischer, H. S. et al. Neutral endopeptidase knockout induces hyperalgesia in a model of visceral pain, an effect related to bradykinin and nitric oxide. J. Mol. Neurosci. 18, 129–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Kramer, H. H., He, L., Lu, B., Birklein, F. & Sommer, C. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase. Neurobiol. Dis. 35, 177–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Lu, B. et al. Neutral endopeptidase modulation of septic shock. J. Exp. Med. 181, 2271–2275 (1995).

    Article  CAS  PubMed  Google Scholar 

  162. Connelly, J. C., Skidgel, R. A., Schulz, W. W., Johnson, A. R. & Erdos, E. G. Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide. Proc. Natl Acad. Sci. USA 82, 8737–8741 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shipp, M. A. et al. Downregulation of enkephalin-mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Nature 347, 394–396 (1990).

    Article  CAS  PubMed  Google Scholar 

  164. Sturiale, S. et al. Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P. Proc. Natl Acad. Sci. USA 96, 11653–11658 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kirkwood, K. S. et al. Deletion of neutral endopeptidase exacerbates intestinal inflammation induced by Clostridium difficile toxin A. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G544–G551 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Barbara, G. et al. Neutral endopeptidase (EC 3.4.24.11) downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut 52, 1457–1464 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Koh, Y. H., Moochhala, S. & Bhatia, M. The role of neutral endopeptidase in caerulein-induced acute pancreatitis. J. Immunol. 187, 5429–5439 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Day, A. L. et al. Neutral endopeptidase determines the severity of pancreatitis-associated lung injury. J. Surg. Res. 128, 21–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Scholzen, T. E. et al. Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis. J. Immunol. 166, 1285–1291 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Kramer, H. H. et al. Inhibition of neutral endopeptidase (NEP) facilitates neurogenic inflammation. Exp. Neurol. 195, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Kiemer, A. K. & Vollmar, A. M. The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages. Ann. Rheum. Dis. 60 (Suppl. 3), iii68–iii70 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cattaruzza, F., Poole, D. P. & Bunnett, N. W. Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem. Soc. Trans. 41, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Sumitomo, M., Shen, R. & Nanus, D. M. Involvement of neutral endopeptidase in neoplastic progression. Biochim. Biophys. Acta 1751, 52–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Papandreou, C. N. et al. Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat. Med. 4, 50–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Smollich, M. et al. On the role of endothelin-converting enzyme-1 (ECE-1) and neprilysin in human breast cancer. Breast Cancer Res. Treat. 106, 361–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Shen, R. et al. Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology 141, 1699–1704 (2000).

    Article  CAS  PubMed  Google Scholar 

  177. Dai, J. et al. Tumor-suppressive effects of neutral endopeptidase in androgen-independent prostate cancer cells. Clin. Cancer Res. 7, 1370–1377 (2001).

    CAS  PubMed  Google Scholar 

  178. Horiguchi, A. et al. Lentiviral vector neutral endopeptidase gene transfer suppresses prostate cancer tumor growth. Cancer Gene Ther. 14, 583–589 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Horiguchi, A. et al. Neutral endopeptidase inhibits prostate cancer tumorigenesis by reducing FGF-2-mediated angiogenesis. Prostate Cancer Prostatic Dis. 11, 79–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Iida, K., Zheng, R., Shen, R. & Nanus, D. M. Adenoviral neutral endopeptidase gene delivery in combination with paclitaxel for the treatment of prostate cancer. Int. J. Oncol. 41, 1192–1198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Osman, I. et al. Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Cancer 107, 2628–2636 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Terauchi, M. et al. Anti-progressive effect of neutral endopeptidase 24.11 (NEP/CD10) on cervical carcinoma in vitro and in vivo. Oncology 69, 52–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Kajiyama, H. et al. Neutral endopeptidase 24.11/CD10 suppresses progressive potential in ovarian carcinoma in vitro and in vivo. Clin. Cancer Res. 11, 1798–1808 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Meng, F. et al. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G759–G768 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Stephen, H. M. et al. Epigenetic suppression of neprilysin regulates breast cancer invasion. Oncogenesis 5, e207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Salles, G., Chen, C. Y., Reinherz, E. L. & Shipp, M. A. CD10/NEP is expressed on Thy-1low B220+ murine B-cell progenitors and functions to regulate stromal cell-dependent lymphopoiesis. Blood 80, 2021–2029 (1992).

    CAS  PubMed  Google Scholar 

  187. Tarasoff-Conway, J. M. et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Masters, C. L. & Selkoe, D. J. Biochemistry of amyloid ß-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Morley, J. E. & Farr, S. A. The role of amyloid-beta in the regulation of memory. Biochem. Pharmacol. 88, 479–485 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aß1-42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dahlgren, K. N. et al. Oligomeric and fibrillar species of amyloid-ß peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Miners, J. S., Kehoe, P. & Love, S. Neprilysin protects against cerebral amyloid angiopathy and Aß-induced degeneration of cerebrovascular smooth muscle cells. Brain Pathol. 21, 594–605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Fonseca, A. C. et al. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells. Mol. Neurobiol. 51, 610–622 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. M. The levels of soluble versus insoluble brain Aß distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol. 158, 328–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Musiek, E. S. & Holtzman, D. M. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat. Neurosci. 18, 800–806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Saido, T. & Leissring, M. A. Proteolytic degradation of amyloid ß-protein. Cold Spring Harb. Perspect. Med. 2, a006379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hafez, D. et al. Neprilysin-2 is an important ß-amyloid degrading enzyme. Am. J. Pathol. 178, 306–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Iwata, N., Higuchi, M. & Saido, T. C. Metabolism of amyloid-ß peptide and Alzheimer's disease. Pharmacol. Ther. 108, 129–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Kanemitsu, H., Tomiyama, T. & Mori, H. Human neprilysin is capable of degrading amyloid ß peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350, 113–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Farris, W. et al. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am. J. Pathol. 171, 241–251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Marr, R. A. et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 1992–1996 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Parthasarathy, R. et al. Reduction of amyloid-beta levels in mouse eye tissues by intra-vitreally delivered neprilysin. Exp Eye Res. 138, 134–144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. El-Amouri, S. S. et al. Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. Am. J. Pathol. 172, 1342–1354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Spencer, B. et al. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 9, 109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Guan, H. et al. Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer's disease. J. Neurosci. Res. 87, 1462–1473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Spencer, B. et al. Peripheral delivery of a CNS targeted, metalo-protease reduces Aß toxicity in a mouse model of Alzheimer's disease. PLoS ONE 6, e16575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Park, M. H. et al. Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer's disease mice. Brain Res. 1529, 113–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Devi, L. & Ohno, M. A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol. Brain 8, 19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Rose, J. B. et al. Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer's disease. J. Neurosci. 29, 1115–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Iwata, N. et al. Identification of the major Aß1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. 6, 143–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Newell, A. J. et al. Thiorphan-induced neprilysin inhibition raises amyloid ß levels in rabbit cortex and cerebrospinal fluid. Neurosci. Lett. 350, 178–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Marr, R. A. et al. Neprilysin regulates amyloid ß peptide levels. J. Mol. Neurosci. 22, 5–11 (2004).

    Article  PubMed  Google Scholar 

  214. Eckman, E. A. et al. Regulation of steady-state ß-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 30471–30478 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Mouri, A. et al. Inhibition of neprilysin by thiorphan (i.c.v.) causes an accumulation of amyloid ß and impairment of learning and memory. Behav. Brain Res. 168, 83–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Zou, L. B. et al. Inhibition of neprilysin by infusion of thiorphan into the hippocampus causes an accumulation of amyloid ß and impairment of learning and memory. J. Pharmacol. Exp. Ther. 317, 334–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Yasojima, K., Akiyama, H., McGeer, E. G. & McGeer, P. L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci. Lett. 297, 97–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  218. Yasojima, K., McGeer, E. G. & McGeer, P. L. Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res. 919, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Wang, S. et al. Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer's brain. J. Neurochem. 115, 47–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Miners, J. S., van Helmond, Z., Kehoe, P. G. & Love, S. Changes with age in the activities of ß-secretase and the Aß-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme. Brain Pathol. 20, 794–802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Huang, J. Y., Hafez, D. M., James, B. D., Bennett, D. A. & Marr, R. A. Altered NEP2 expression and activity in mild cognitive impairment and Alzheimer's disease. J. Alzheimers Dis. 28, 433–441 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Maruyama, M. et al. Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer's disease. Ann. Neurol. 57, 832–842 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Sorensen, K. C., Simonsen, A. H., Holmetoft, U. B., Hasselbalch, S. G. & Heegaard, N. H. Neprilysin-like activity correlates with CSF-Tau and phospho-tau in patients with Alzheimer's disease. J. Alzheimers Dis. 37, 379–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Clarimon, J. et al. Possible increased risk for Alzheimer's disease associated with neprilysin gene. J. Neural Transm. (Vienna) 110, 651–657 (2003).

    Article  CAS  Google Scholar 

  225. Helisalmi, S. et al. Polymorphisms in neprilysin gene affect the risk of Alzheimer's disease in Finnish patients. J. Neurol. Neurosurg. Psychiatry 75, 1746–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Sakai, A. et al. Association of the Neprilysin gene with susceptibility to late-onset Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 164–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  227. Shi, J. et al. Mutation screening and association study of the neprilysin gene in sporadic Alzheimer's disease in Chinese persons. J. Gerontol. A Biol. Sci. Med. Sci. 60, 301–306 (2005).

    Article  PubMed  Google Scholar 

  228. Wood, L. S., Pickering, E. H., McHale, D. & Dechairo, B. M. Association between neprilysin polymorphisms and sporadic Alzheimer's disease. Neurosci. Lett. 427, 103–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Miners, S. et al. Genetic variation in MME in relation to neprilysin protein and enzyme activity, Aß levels, and Alzheimer's disease risk. Int. J. Mol. Epidemiol. Genet. 3, 30–38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, H. Z. et al. Neprilysin confers genetic susceptibility to Alzheimer's disease in Han Chinese. Mol. Neurobiol. 53, 4883–4892 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Sodeyama, N. et al. Lack of association of neprilysin polymorphism with Alzheimer's disease and Alzheimer's disease-type neuropathological changes. J. Neurol. Neurosurg. Psychiatry 71, 817–818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Oda, M. et al. Dinucleotide repeat polymorphisms in the neprilysin gene are not associated with sporadic Alzheimer's disease. Neurosci. Lett. 320, 105–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  233. Lilius, L. et al. No association between polymorphisms in the neprilysin promoter region and Swedish Alzheimer's disease patients. Neurosci. Lett. 337, 111–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  234. Fu, Y. et al. Lack of association of neprilysin gene polymorphisms with Alzheimer's disease in a southern Chinese community. Int. Psychogeriatr. 21, 354–358 (2009).

    Article  PubMed  Google Scholar 

  235. Blomqvist, M. E., McCarthy, S., Blennow, K., Andersson, B. & Prince, J. A. Evaluation of neprilysin sequence variation in relation to CSF ß-amyloid levels and Alzheimer disease risk. Int. J. Mol. Epidemiol. Genet. 1, 47–52 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Debiec, H. et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet 364, 1252–1259 (2004).

    Article  CAS  PubMed  Google Scholar 

  237. Koay, E. S. C. & Walmsley, N. A Primer of Chemical Pathology (World Scientific Publishing Co. Pte. Ltd., 1996).

    Book  Google Scholar 

  238. Hajduk, A. M., Kiefe, C. I., Person, S. D., Gore, J. G. & Saczynski, J. S. Cognitive change in heart failure: a systematic review. Circ. Cardiovasc. Qual. Outcomes 6, 451–460 (2013).

    Article  PubMed  Google Scholar 

  239. Gehrs, K. M., Anderson, D. H., Johnson, L. V. & Hageman, G. S. Age-related macular degeneration — emerging pathogenetic and therapeutic concepts. Ann. Med. 38, 450–471 (2006).

    Article  PubMed  Google Scholar 

  240. Luibl, V. et al. Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J. Clin. Invest. 116, 378–385 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang, J., Ohno-Matsui, K. & Morita, I. Elevated amyloid ß production in senescent retinal pigment epithelium, a possible mechanism of subretinal deposition of amyloid ß in age-related macular degeneration. Biochem. Biophys. Res. Commun. 423, 73–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  242. Yoshida, T. et al. The potential role of amyloid ß in the pathogenesis of age-related macular degeneration. J. Clin. Invest. 115, 2793–2800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Biffi, A. & Greenberg, S. M. Cerebral amyloid angiopathy: a systematic review. J. Clin. Neurol. 7, 1–9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Attems, J., Lauda, F. & Jellinger, K. A. Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J. Neurol. 255, 70–76 (2008).

    Article  PubMed  Google Scholar 

  245. Carpentier, M., Robitaille, Y., DesGroseillers, L., Boileau, G. & Marcinkiewicz, M. Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61, 849–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  246. Miners, J. S. et al. Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 65, 1012–1021 (2006).

    Article  CAS  PubMed  Google Scholar 

  247. Yamada, M. et al. Association of neprilysin polymorphism with cerebral amyloid angiopathy. J. Neurol. Neurosurg. Psychiatry 74, 749–751 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tsubuki, S., Takaki, Y. & Saido, T. C. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aß to physiologically relevant proteolytic degradation. Lancet 361, 1957–1958 (2003).

    Article  CAS  PubMed  Google Scholar 

  249. Scholzen, T. E., Konig, S., Fastrich, M., Bohm, M. & Luger, T. A. Terminating the stress: peripheral peptidolysis of proopiomelanocortin-derived regulatory hormones by the dermal microvascular endothelial cell extracellular peptidases neprilysin and angiotensin-converting enzyme. Endocrinology 148, 2793–2805 (2007).

    Article  CAS  PubMed  Google Scholar 

  250. Lisy, O. et al. Neutral endopeptidase inhibition potentiates the natriuretic actions of adrenomedullin. Am. J. Physiol. Renal Physiol. 275, F410–F414 (1998).

    Article  CAS  Google Scholar 

  251. Carson, J. A. & Turner, A. J. ß-Amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases? J. Neurochem. 81, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  252. Skidgel, R. A. & Erdos, E. G. Angiotensin converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides 25, 521–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  253. Allred, A. J., Diz, D. I., Ferrario, C. M. & Chappell, M. C. Pathways for angiotensin-(1–7) metabolism in pulmonary and renal tissues. Am. J. Physiol. Renal Physiol. 279, F841–F850 (2000).

    Article  CAS  PubMed  Google Scholar 

  254. Kenny, A. J., Bourne, A. & Ingram, J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem. J. 291, 83–88 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Katayama, M. et al. Catabolism of calcitonin gene-related peptide and substance P by neutral endopeptidase. Peptides 12, 563–567 (1991).

    Article  CAS  PubMed  Google Scholar 

  256. Sokolovsky, M. et al. Endothelins are more senstive than sarafotoxins to neutral endopeptidase: possible physiological significance. Proc. Natl Acad. Sci. USA 87, 4702–4706 (1990).

    Article  CAS  Google Scholar 

  257. Hupe-Sodmann, K. et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul. Pept. 58, 149–156 (1995).

    Article  CAS  PubMed  Google Scholar 

  258. Trebbien, R. et al. Neutral endopeptidase 24.11 is important for the degradation of both endogenous and exogenous glucagon in anesthetized pigs. Am. J. Physiol. Endocrinol. Metab. 287, E431–E438 (2004).

    Article  CAS  PubMed  Google Scholar 

  259. Medeiros Mdos, S. & Turner, A. J. Metabolism and functions of neuropeptide Y. Neurochem. Res. 21, 1125–1132 (1996).

    Article  PubMed  Google Scholar 

  260. Johnson, A. R., Skidgel, R. A., Gafford, J. T. & Erdos, E. G. Enzymes in placental microvilli: angiotensin I converting enzyme, angiotensinase A, carboxypeptidase, and neutral endopeptidase (“enkephalinase”). Peptides 5, 789–796 (1984).

    Article  CAS  PubMed  Google Scholar 

  261. Medeiros, M. D. & Turner, A. J. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 134, 2088–2094 (1994).

    Article  CAS  PubMed  Google Scholar 

  262. Goetzl, E. J., Sreedharan, S. P., Turck, C. W., Bridenbaugh, R. & Malfroy, B. Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase (neutral endopeptidase, EC 3.4.24.11). Biochem. Biophys. Res. Commun. 158, 850–854 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

St Vincent's Institute of Medical Research is supported in part by the Victorian Government's Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Campbell.

Ethics declarations

Competing interests

D.J.C. has consulted for, and received financial and material support from, Novartis.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, D. Long-term neprilysin inhibition — implications for ARNIs. Nat Rev Cardiol 14, 171–186 (2017). https://doi.org/10.1038/nrcardio.2016.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing