Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myocardial stress and autophagy: mechanisms and potential therapies

Key Points

  • Autophagic breakdown of cellular components is regulated by multiple signalling networks, including insulin and 5′-AMP-activated protein kinase pathways, and is essential for cardiomyocyte survival in response to stress

  • A new understanding of cargo-selective autophagy in the heart is emerging, relating to specific pathways for degradation of proteins (macrophagy), mitochondria (mitophagy), and glycogen (glycophagy)

  • Disturbances in cardiomyocyte autophagy are evident in numerous cardiac pathologies, including cardiac hypertrophy, pressure-overload heart failure, ischaemic heart disease, as well as diabetic and age-related cardiomyopathies

  • The cardioprotective effects of autophagy in acute energy stress are clear, but whether sustained elevation of autophagy in chronic disease states is beneficial or detrimental is not known

  • Autophagy is a potentially attractive therapeutic target in cardiopathology; several new areas for investigation related to therapies for cardiomyocyte-specific and cargo-specific autophagy have been identified

Abstract

Autophagy is a ubiquitous cellular catabolic process responsive to energy stress. Research over the past decade has revealed that cardiomyocyte autophagy is a prominent homeostatic pathway, important in adaptation to altered myocardial metabolic demand. The cellular machinery of autophagy involves targeted direction of macromolecules and organelles for lysosomal degradation. Activation of autophagy has been identified as cardioprotective in some settings (that is, ischaemia and ischaemic preconditioning). In other situations, sustained autophagy has been linked with cardiopathology (for example, sustained pressure overload and heart failure). Perturbation of autophagy in diabetic cardiomyopathy has also been observed and is associated with both adaptive and maladaptive responses to stress. Emerging research findings indicate that various forms of selective autophagy operate in parallel to manage various types of catabolic cellular cargo including mitochondria, large proteins, glycogen, and stored lipids. In this Review, induction of autophagy associated with cardiac benefit or detriment is considered. The various static and dynamic approaches used to measure autophagy are critiqued, and current inconsistencies in the understanding of autophagy regulation in the heart are highlighted. The prospects for pharmacological intervention to achieve therapeutic manipulation of autophagic processes are also discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The machinery of autophagy.
Figure 2: Cargo-selective autophagy.
Figure 3: Physiological regulation of autophagy in the heart.
Figure 4: Autophagy and ischaemia–reperfusion.

Similar content being viewed by others

References

  1. Senyo, S. E., Lee, R. T. & Kühn, B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 13, 532–541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Reichelt, M. E., Mellor, K. M., Curl, C. L., Stapleton, D. & Delbridge, L. M. Myocardial glycophagy — a specific glycogen handling response to metabolic stress is accentuated in the female heart. J. Mol. Cell. Cardiol. 65, 67–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Li, W. W., Li, J. & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Jackson, M. P. & Hewitt, E. W. Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem. 60, 173–180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadete, V. J. et al. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J. Physiol. 594, 5343–5362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanida, I. Autophagy basics. Microbiol. Immunol. 55, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Tooze, S. A. & Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Maejima, Y., Isobe, M. & Sadoshima, J. Regulation of autophagy by Beclin 1 in the heart. J. Mol. Cell. Cardiol. 95, 19–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huber, L. A. & Teis, D. Lysosomal signaling in control of degradation pathways. Curr. Opin. Cell Biol. 39, 8–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Z., Huang, J., Geng, J., Nair, U. & Klionsky, D. J. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol. Biol. Cell 17, 5094–5104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gottlieb, R. A., Andres, A. M., Sin, J. & Taylor, D. P. Untangling autophagy measurements: all fluxed up. Circ. Res. 116, 504–514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gurney, M. A. et al. Measuring cardiac autophagic flux in vitro and in vivo. Methods Mol. Biol. 1219, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Martins-Marques, T., Ribeiro-Rodrigues, T., Pereira, P., Codogno, P. & Girao, H. Autophagy and ubiquitination in cardiovascular diseases. DNA Cell Biol. 34, 243–251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580–592 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Tan, V. P. & Miyamoto, S. Nutrient-sensing mTORC1: integration of metabolic and autophagic signals. J. Mol. Cell. Cardiol. 95, 31–41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Egan, D., Kim, J., Shaw, R. J. & Guan, K. L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643–644 (2011).

    Article  PubMed  CAS  Google Scholar 

  24. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oyabu, J. et al. Autophagy-mediated degradation is necessary for regression of cardiac hypertrophy during ventricular unloading. Biochem. Biophys. Res. Commun. 441, 787–792 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Rifki, O. F., Bodemann, B. O., Battiprolu, P. K., White, M. A. & Hill, J. A. RalGDS-dependent cardiomyocyte autophagy is required for load-induced ventricular hypertrophy. J. Mol. Cell. Cardiol. 59, 128–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao, D. J. et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl Acad. Sci. USA 108, 4123–4128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ikeda, Y. et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ. Res. 116, 264–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B. & Gottlieb, R. A. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy 6, 462–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Eiyama, A. & Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Gottlieb, R. A. & Bernstein, D. Mitochondrial remodeling: rearranging, recycling, and reprogramming. Cell Calcium 60, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saito, T. & Sadoshima, J. The molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ. Res. 116, 1477–1490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heo, J.-M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1–PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts, R. F., Tang, M. Y., Fon, E. A. & Durcan, T. M. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles. Int. J. Biochem. Cell Biol. 79, 427–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Cadete, V. et al. Mitochondrial-derived vesicle formation in cardiac mitochondrial quality control [abstract]. FASEB J. 29 (Suppl.), 1036.1 (2015).

    Google Scholar 

  39. Huang, C. et al. Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS ONE 6, e20975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brennan, J. P. et al. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc. Res. 72, 313–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Minners, J. et al. Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc. Res. 47, 68–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Andres, A. M. et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 21, 1960–1973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stotland, A. & Gottlieb, R. A. α-MHC MitoTimer mouse: in vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J. Mol. Cell. Cardiol. 90, 53–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. McWilliams, T. G. & Prescott, A. R. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol. 214, 333–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, N. et al. Measuring in vivo mitophagy. Mol. Cell 60, 685–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pompe, J. C. Over idiopathische hypertrophie van het hart [in Dutch]. Ned. Tijdschr. Geneeskd. 76, 304–312 (1932).

    Google Scholar 

  47. Hers, H. G. α-glucosidase deficiency in generalized glycogenstorage disease (Pompe's disease). Biochem. J. 86, 11–16 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, S. et al. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J. Biol. Chem. 285, 34960–34971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, S., Wells, C. D. & Roach, P. J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mellor, K. M., Varma, U., Stapleton, D. & Delbridge, L. M. D. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am. J. Physiol. Heart Circ. Physiol. 306, H1240–H1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Kondomerkos, D. J., Kalamidas, S. A. & Kotoulas, O. B. An electron microscopic and biochemical study of the effects of glucagon on glycogen autophagy in the liver and heart of newborn rats. Microsc. Res. Tech. 63, 87–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Kondomerkos, D. J., Kalamidas, S. A., Kotoulas, O. B. & Hann, A. C. Glycogen autophagy in the liver and heart of newborn rats. The effects of glucagon, adrenalin or rapamycin. Histol. Histopathol. 20, 689–696 (2005).

    CAS  PubMed  Google Scholar 

  53. Zirin, J., Nieuwenhuis, J. & Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 11, e1001708 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Singh, P. K. & Singh, S. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy. Front. Neurol. 6, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kalamidas, S. A. & Kondomerkos, D. J. The administration of nonmetabolizable glucose analogues fails to suppress the development of glycogen autophagy in newborn rat hepatocytes. Microsc. Res. Tech. 73, 1009–1014 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kakhlon, O. et al. Polyglucosan neurotoxicity caused by glycogen branching enzyme deficiency can be reversed by inhibition of glycogen synthase. J. Neurochem. 127, 101–113 (2013).

    CAS  PubMed  Google Scholar 

  57. Duran, J., Gruart, A., Garcia-Rocha, M., Delgado-Garcia, J. M. & Guinovart, J. J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 23, 3147–3156 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Chandramouli, C. et al. Myocardial glycogen dynamics: new perspectives on disease mechanisms. Clin. Exp. Pharmacol. Physiol. 42, 415–425 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Troncoso, R. et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc. Res. 93, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Riehle, C. et al. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J. Clin. Invest. 123, 5319–5333 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riehle, C. & Abel, E. D. Insulin regulation of myocardial autophagy. Circ. J. 78, 2569–2576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sciarretta, S. et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 125, 1134–1146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maejima, Y. et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med. 19, 1478–1488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gurkar, A. U. et al. Identification of ROCK1 kinase as a critical regulator of Beclin1-mediated autophagy during metabolic stress. Nat. Commun. 4, 2189 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin, X. et al. miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol. Cell. Biochem. 379, 1–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Lai, L., Wang, N., Zhu, G., Duan, X. & Ling, F. MiRNA-30e mediated cardioprotection of ACE2 in rats with doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life Sci. 169, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Ucar, A. et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 3, 1078 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Li, Q. et al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J. Cell. Mol. Med. 18, 919–928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zou, Y., Liu, W., Zhang, J. & Xiang, D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1. Mol. Med. Rep. 14, 1033–1039 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Higashi, K. et al. MicroRNA-145 repairs infarcted myocardium by accelerating cardiomyocyte autophagy. Am. J. Physiol. Heart Circ. Physiol. 309, H1813–H1826 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, M. et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget 7, 42274–42287 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Mo, J., Zhang, D. & Yang, R. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci. Rep. 36, e00396 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Barile, L., Moccetti, T., Marban, E. & Vassalli, G. Roles of exosomes in cardioprotection. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehw304 (2016).

  76. Ibrahim, A. G., Cheng, K. & Marban, E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2, 606–619 (2014).

    Article  CAS  Google Scholar 

  77. Giricz, Z. et al. Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J. Mol. Cell. Cardiol. 68, 75–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, L. et al. Decreased autophagy: a major factor for cardiomyocyte death induced by beta1-adrenoceptor autoantibodies. Cell Death Dis. 6, e1862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gupta, M. K. et al. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ. Res. 118, 1894–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shirakabe, A. et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133, 1249–1263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saito, T. et al. Autophagic vacuoles in cardiomyocytes of dilated cardiomyopathy with initially decompensated heart failure predict improved prognosis. Autophagy 12, 579–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schlossarek, S., Mearini, G. & Carrier, L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol. 50, 613–620 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Linton, P. J., Gurney, M., Sengstock, D., Mentzer, R. M. Jr & Gottlieb, R. A. This old heart: cardiac aging and autophagy. J. Mol. Cell. Cardiol. 83, 44–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Ceylan-Isik, A. F. et al. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy. Basic Res. Cardiol. 108, 335 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mellor, K. M., Reichelt, M. E. & Delbridge, L. M. Autophagy anomalies in the diabetic myocardium. Autophagy 7, 1263–1267 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Y. & Ren, J. Epigenetics and obesity cardiomyopathy: from pathophysiology to prevention and management. Pharmacol. Ther. 161, 52–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Ceylan-Isik, A. F. et al. Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J. Mol. Cell. Cardiol. 48, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Yuan, H. et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H470–H479 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Gustafsson, A. B. & Gottlieb, R. A. Autophagy in ischemic heart disease. Circ. Res. 104, 150–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsui, Y. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100, 914–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Li, D. L. et al. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 133, 1668–1687 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kostin, S. et al. Myocytes die by multiple mechanisms in failing human hearts. Circ. Res. 92, 715–724 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Tannous, P. et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc. Natl Acad. Sci. USA 105, 9745–9750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Porrello, E. R. et al. Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53, 1032–1040 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Porrello, E. R. & Delbridge, L. M. Cardiomyocyte autophagy is regulated by angiotensin II type 1 and type 2 receptors. Autophagy 5, 1215–1216 (2009).

    Article  PubMed  Google Scholar 

  97. Li, B., Chi, R. F., Qin, F. Z. & Guo, X. F. Distinct changes of myocyte autophagy during myocardial hypertrophy and heart failure: association with oxidative stress. Exp. Physiol. 101, 1050–1063 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Pfeifer, U., Fohr, J., Wilhelm, W. & Dammrich, J. Short-term inhibition of cardiac cellular autophagy by isoproterenol. J. Mol. Cell. Cardiol. 19, 1179–1184 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ha, T. et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo. Free Radic. Biol. Med. 39, 1570–1580 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kuzman, J. A., O'Connell, T. D. & Gerdes, A. M. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology 148, 3477–3484 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Shirakabe, A., Ikeda, Y., Sciarretta, S., Zablocki, D. K. & Sadoshima, J. Aging and autophagy in the heart. Circ. Res. 118, 1563–1576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wohlgemuth, S. E. et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res. 10, 281–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Taneike, M. et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6, 600–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Song, Z. et al. Essential role for UVRAG in autophagy and maintenance of cardiac function. Cardiovasc. Res. 101, 48–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Hua, Y. et al. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res. Cardiol. 106, 1173–1191 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, L. et al. Restoring pharmacologic preconditioning in the aging heart: role of mitophagy/autophagy. J. Gerontol. A Biol. Sci. Med. Sci. http://dx.doi.org/10.1093/gerona/glw168 (2016).

  108. Boyle, A. J. et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp. Gerontol. 46, 549–559 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Inuzuka, Y. et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 120, 1695–1703 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Khalil, H. et al. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 11, 381–388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Russell, R. R. III et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 114, 495–503 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, L. et al. The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy. J. Cardiovasc. Pharmacol. Ther. 21, 70–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, C. et al. Autophagy induced by ischemic preconditioning is essential for cardioprotection. J. Cardiovasc. Transl. Res. 3, 365–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wei, C., Li, H., Han, L., Zhang, L. & Yang, X. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts. J. Cardiovasc. Pharmacol. 61, 416–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Yitzhaki, S. et al. Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Res. Cardiol. 104, 157–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yao, H., Han, X. & Han, X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am. J. Cardiovasc. Drugs 14, 433–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Lal, H., Ahmad, F., Woodgett, J. & Force, T. The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 116, 138–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhai, P. & Sadoshima, J. Glycogen synthase kinase-3β controls autophagy during myocardial ischemia and reperfusion. Autophagy 8, 138–139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hariharan, N., Zhai, P. & Sadoshima, J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid. Redox Signal. 14, 2179–2190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hamacher-Brady, A., Brady, N. R. & Gottlieb, R. A. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J. Biol. Chem. 281, 29776–29787 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Ma, X. et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125, 3170–3181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, S. et al. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36. Open Biol. 6, 160177 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kappel, B. A. et al. Post-translational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis 249, 148–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Ma, X. et al. Regulation of the transcription factor EB-PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress. Mol. Cell. Biol. 35, 956–976 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mellor, K. M., Bell, J. R., Young, M. J., Ritchie, R. H. & Delbridge, L. M. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J. Mol. Cell. Cardiol. 50, 1035–1043 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Xie, Z. et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60, 1770–1778 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Munasinghe, P. E. et al. Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. Int. J. Cardiol. 202, 13–20 (2016).

    Article  PubMed  Google Scholar 

  128. Wang, B. et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J. Cell. Mol. Med. 18, 1599–1611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Trivedi, P. C. et al. Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. Biochim. Biophys. Acta 1861, 1893–1910 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Xu, X. et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J. Biol. Chem. 288, 18077–18092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Andres, A. M. et al. Discordant signaling and autophagy response to fasting in hearts of obese mice: implications for ischemia tolerance. Am. J. Physiol. Heart Circ. Physiol. 311, H219–H228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Xu, X., Hua, Y., Nair, S., Zhang, Y. & Ren, J. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J. Mol. Cell. Biol. 5, 61–63 (2013).

    Article  PubMed  Google Scholar 

  133. Jaishy, B. et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J. Lipid Res. 56, 546–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Montaigne, D. et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130, 554–564 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, J. et al. Fenofibrate increases cardiac autophagy via FGF21/SIRT1 and prevents fibrosis and inflammation in the hearts of Type 1 diabetic mice. Clin. Sci. (Lond.) 130, 625–641 (2016).

    Article  CAS  Google Scholar 

  136. He, C., Zhu, H., Li, H., Zou, M. H. & Xie, Z. Dissociation of Bcl-2–Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62, 1270–1281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pei, X. M. et al. Protective effects of desacyl ghrelin on diabetic cardiomyopathy. Acta Diabetol. 52, 293–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Kanamori, H. et al. Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy 11, 1146–1160 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, J. et al. (-)-epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto–Kakizaki rats. Free Radic. Res. 48, 898–906 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Yuan, X. et al. Chloroquine improves left ventricle diastolic function in streptozotocin-induced diabetic mice. Drug Des. Devel. Ther. 10, 2729–2737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Levine, B., Packer, M. & Codogno, P. Development of autophagy inducers in clinical medicine. J. Clin. Invest. 125, 14–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bhuiyan, M. S. et al. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Invest. 123, 5284–5297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, H. H. et al. Fluorescence tomography of rapamycin-induced autophagy and cardioprotection in vivo. Circ. Cardiovasc. Imaging 6, 441–447 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gurusamy, N. et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, L. Q., Cheng, X. S., Huang, C. H., Huang, B. & Liang, Q. Rapamycin protects cardiomyocytes against anoxia/reoxygenation injury by inducing autophagy through the PI3k/Akt pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci. 35, 10–15 (2015).

    Article  PubMed  CAS  Google Scholar 

  146. Yamamoto, T. et al. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE 9, e98972 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Xie, H. et al. Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem. Biophys. Res. Commun. 458, 632–638 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Xie, M. et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129, 1139–1151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Morales, C. R. et al. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Sci. Signal. 9, ra34 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Rothermel, B. A. & Hill, J. A. Autophagy in load-induced heart disease. Circ. Res. 103, 1363–1369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yasuda, H. et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 294, F1050–F1058 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Ridout, R. M., Wildenthal, K. & Decker, R. S. Influence of agents that alter lysosomal function on fetal mouse hearts recovering from anoxia and substrate depletion. J. Mol. Cell. Cardiol. 18, 867–876 (1986).

    Article  CAS  PubMed  Google Scholar 

  153. Gupta, S. K. et al. Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J. Am. Coll. Cardiol. 68, 1557–1571 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Salabei, J. K. et al. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy. Toxicol. Appl. Pharmacol. 262, 265–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chiao, Y. A. et al. Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging (Albany NY) 8, 314–327 (2016).

    Article  CAS  Google Scholar 

  156. Aranguiz-Urroz, P. et al. Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation. Biochim. Biophys. Acta 1812, 23–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Bahro, M., Dammrich, J. & Pfeifer, U. Short-term inhibition of cellular autophagy by isoproterenol in the submandibular gland. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 53, 32–36 (1987).

    Article  CAS  PubMed  Google Scholar 

  158. Shimomura, M. et al. Acute effects of statin on reduction of angiopoietin-like 2 and glyceraldehyde-derived advanced glycation end-products levels in patients with acute myocardial infarction: a message from SAMIT (Statin for Acute Myocardial Infarction Trial). Heart Vessels 31, 1583–1589 (2016).

    Article  PubMed  Google Scholar 

  159. Post, S. et al. Early statin treatment prior to primary PCI for acute myocardial infarction: REPERATOR, a randomized placebo-controlled pilot trial. Catheter Cardiovasc. Interv. 80, 756–765 (2012).

    Article  PubMed  Google Scholar 

  160. Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Lee, Y., Hong, Y., Lee, S. R., Chang, K. T. & Hong, Y. Autophagy contributes to retardation of cardiac growth in diabetic rats. Lab. Anim. Res. 28, 99–107 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Eguchi, M. et al. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS ONE 7, e30450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun, S. et al. Lin28a protects against diabetic cardiomyopathy via the PKA/ROCK2 pathway. Biochem. Biophys. Res. Commun. 469, 29–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Zhao, Y. et al. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS ONE 8, e75927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, M. et al. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia 59, 2435–2447 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Lee, J. H. et al. Diet control to achieve euglycemia induces significant loss of heart and liver weight via increased autophagy compared with ad libitum diet in diabetic rats. Exp. Mol. Med. 46, e111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Marsh, S. A., Powell, P. C., Dell'italia, L. J. & Chatham, J. C. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 92, 648–656 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Gao, H., Yang, Q., Dong, R., Hou, F. & Wu, Y. Sequential changes in autophagy in diabetic cardiac fibrosis. Mol. Med. Rep. 13, 327–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Lai, C. H. et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats. Int. J. Med. Sci. 13, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chou, I. P. et al. Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice — possible involvement of oxidative stress and autophagy. Endocr. Res. 39, 173–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Russo, S. B. et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122, 3919–3930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Guo, R., Zhang, Y., Turdi, S. & Ren, J. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim. Biophys. Acta 1832, 1136–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cui, M., Yu, H., Wang, J., Gao, J. & Li, J. Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J. Diabetes Res. 2013, 852754 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Xu, X. & Ren, J. Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity. Int. J. Obes. (Lond.) 39, 387–396 (2015).

    Article  CAS  Google Scholar 

  176. Hsu, H. C. et al. Time-dependent cellular response in the liver and heart in a dietary-induced obese mouse model: the potential role of ER stress and autophagy. Eur. J. Nutr. 55, 2031–2043 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Lancel, S. et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS ONE 7, e41836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Lea M. D. Delbridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delbridge, L., Mellor, K., Taylor, D. et al. Myocardial stress and autophagy: mechanisms and potential therapies. Nat Rev Cardiol 14, 412–425 (2017). https://doi.org/10.1038/nrcardio.2017.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing