Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision medicine for metastatic breast cancer—limitations and solutions

Key Points

  • Recent research data defining the genomic landscape of breast cancer have reinforced the notion that this disease is driven by genomic alterations

  • So far very few gene drivers validated in breast cancer have been identified, including ESR1, ERBB 2, PIK3CA and ATK1

  • Identification of drivers, characterization of resistant clones, identification of DNA repair defects and mechanisms of immune suppression are potential uses of genomics to personalize medicine

  • The development of precision medicine for the treatment of breast cancer has several major challenges that include low frequency of targetable molecular alterations, feasibility of high-throughput technologies and availability of targeted therapy

Abstract

The development of precision medicine for the management of metastatic breast cancer is an appealing concept; however, major scientific and logistical challenges hinder its implementation in the clinic. The identification of driver mutational events remains the biggest challenge, because, with the few exceptions of ER, HER2, PIK3CA and AKT1, no validated oncogenic drivers of breast cancer exist. The development of bioinformatic tools to help identify driver mutations, together with assessment of pathway activation and dependency should help resolve this issue in the future. The occurrence of secondary resistance, such as ESR1 mutations, following endocrine therapy poses a further challenge. Ultra-deep sequencing and monitoring of circulating tumour DNA (ctDNA) could permit early detection of the genetic events underlying resistance and inform on combination therapy approaches. Beside these scientific challenges, logistical and operational issues are a major limitation to the development of precision medicine. For example, the low incidence of most candidate genomic alterations hinders randomized trials, as the number of patients to be screened would be too high. We discuss these limitations and the solutions, which include scaling-up the number of patients screened for identifying a genomic alteration, the clustering of genomic alterations into pathways, and the development of personalized medicine trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible applications of genomics to personalize therapy of MBC.
Figure 2: Limitations and solutions for precision medicine in MBC.
Figure 3: Development of MBC precision medicine.
Figure 4: Overcoming the accrual challenges of stratified medicine approaches.

Similar content being viewed by others

References

  1. Jensen, E. V. & DeSombre, E. R. Oestrogen-receptor interaction. Science 182, 126–134 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Osborne, C. K. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 339, 1609–1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Dawood, S., Broglio, K., Buzdar, A. U., Hortobagyi, G. N. & Giordano, S. H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28, 92–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hortobagyi, G. N. et al. Correlation of molecular alterations with efficacy of everolimus in hormone receptor–positive, HER2-negative advanced breast cancer: results from BOLERO-2 [abstract]. J. Clin. Oncol. 31 (Suppl.), LBA509 (2013).

    Article  Google Scholar 

  8. Treilleux, I. et al. Translational studies within the TAMRAD randomized GINECO trial: evidence for mTORC1 activation marker as a predictive factor for everolimus efficacy in advanced breast cancer. Ann. Oncol. 26, 120–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Amir, E. et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).

    Article  PubMed  Google Scholar 

  11. Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumours. J. Clin. Oncol. 30, 593–599 (2012).

    Article  PubMed  Google Scholar 

  12. Toy, W. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson, D. R. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnedos, M. et al. Genomic and immune characterization of metastatic breast cancer (mBC): And ancillary study of the SAFIR01 & MOSCATO trials [abstract]. Ann. Oncol. 25, a351O (2014).

    Article  Google Scholar 

  15. Massard, C. et al. Enriching phase I trials with molecular alterations: Interim analysis of 708 patients enrolled in the MOSCATO 01 trial [abstract]. 13th International Congress on Targeted Anticancer Therapies, Paris, France, aO3.7 (2015).

    Google Scholar 

  16. Lord, C. J. & Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19, 1381–1388 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Wagle, N. et al. Whole exome sequencing (WES) of HER2+ metastatic breast cancer (MBC) from patients with or without prior trastuzumab (T): A correlative analysis of TBCRC003. Cancer Res. 75, PD3–PD5 (2015).

    Article  CAS  Google Scholar 

  18. Hammond, M. E. et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of oestrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolff, A. C. et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 31, 3997–4013 (2013).

    Article  PubMed  Google Scholar 

  20. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Sorlie, T. et al. Repeated observation of breast tumour subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loi, S. et al. PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in oestrogen receptor positive breast cancer. PLoS ONE 8, e53292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balko, J. M. et al. A gene expression signature of MEK pathway activation to predict survival in triple-negative breast cancer [abstract]. J. Clin. Oncol. 30 (Suppl.), a1024 (2012).

    Google Scholar 

  25. Andre, F. et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 15, 267–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Arnedos, M. et al. Array CGH and PIK3CA/AKT1 mutations to drive patients to specific targeted agents: a clinical experience in 108 patients with metastatic breast cancer. Eur. J. Cancer 48, 2293–2299 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumour samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Watkins, J. A., Irshad, S., Grigoriadis, A. & Tutt, A. N. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res. 16, 211 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dawson, S. J. et al. Analysis of circulating tumour DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  30. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  33. Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harbouring PIK3CA mutations. J. Clin. Oncol. 30, 777–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andre, F. et al. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin. Cancer Res. 19, 3693–3702 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Soria, J. C. et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumours. Ann. Oncol. 25, 2244–2251 (2014).

    Article  PubMed  Google Scholar 

  36. Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Finn, R. S. et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell. Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Dickler, M. et al. A first-in-human phase I study to evaluate the oral selective oestrogen receptor degrader GDC-0810 (ARN-810) in postmenopausal women with oestrogen receptor+ HER2−, advanced/metastatic breast cancer. AACR [abstract CT231] (2015).

  41. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumour development. Cell Rep. 7, 1833–1841 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Swisher, E. et al. ARIEL2: A phase 2 study to prospectively identify ovarian cancer patients likely to respond to rucaparib [abstract]. 26th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, a215 (2014).

    Google Scholar 

  45. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Cui, Y., Palii, S. S., Innes, C. L. & Paules, R. S. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents. Cell Cycle 13, 541–550 (2014).

    Google Scholar 

  47. Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Bartlett, J. M. et al. Predicting anthracycline benefit: TOP2A and CEP17-not only but also. J. Clin. Oncol. 33, 1680–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Nanda, R. et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer [abstract]. Cancer Res. 75, S1-09 (2015).

    Google Scholar 

  50. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Seliger, B. et al. Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res. 61, 8647–8650 (2001).

    CAS  PubMed  Google Scholar 

  52. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ignatiadis, M. et al. Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J. Clin. Oncol. 30, 1996–2004 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Vacchelli, E. et al. Loss-of-function alleles of P2RX7 and TLR4 fail to affect the response to chemotherapy in non-small cell lung cancer. Onco-immunology 1, 271–278 (2012).

    Google Scholar 

  55. Bendell, J. C. et al. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumours. J. Clin. Oncol. 30, 282–290 (2012).

    CAS  PubMed  Google Scholar 

  56. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taylor, B. S. et al. Functional copy-number alterations in cancer. PLoS ONE 3, e3179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dees, N. D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hua, X. et al. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies. Am. J. Hum. Genet. 93, 439–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumour types. Nat. Methods 10, 1081–1082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rubio-Perez, C. et al. In silico prescription of anticancer drugs to cohorts of 28 tumour types reveals targeting opportunities. Cancer Cell 27, 382–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Suo, C. et al. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics https://dx.doi.org/10.1093/bioinformatics/btv164 (2015).

  64. Andre, F. et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 15, 580–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Andre, F. et al. Expression patterns and predictive value of phosphorylated AKT in early-stage breast cancer. Ann. Oncol. 19, 315–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Mayer, I. A. et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in oestrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 32, 1202–1209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fritsch, C. et al. Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther. 13, 1117–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Janku, F. et al. Phase I study of the PI3Kα inhibitor BYL719 plus fulvestrant in patients with PIK3CA-altered and wild type ER+/HER2− locally advanced or metastatic breast cancer [abstract]. Cancer Res. 74, PD5–5 (2014).

    Google Scholar 

  69. Fu, Y., Ferte, C., Soria, J. C., F., A. & Lefebvre, C. Combination of targetable gene alterations decreases anti-cancer drug treatment response in cell lines and patients [abstract P10]. Cancer Pharmacogenomics and Targeted Therapies, Hinxton, Cambridge, UK (2014).

    Google Scholar 

  70. Fontanella, C. et al. Does toxicity predict efficacy? Insight into the mechanism of action of lapatinib. J. Clin. Oncol. 32, 3458–3459 (2014).

    Article  PubMed  Google Scholar 

  71. Baselga, J. et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J. Clin. Oncol. 32, 753–761 (2014).

    Article  CAS  Google Scholar 

  72. Schneeweiss, A. et al. Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the TRYPHAENA study. Breast Cancer Res. 16, R73 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lito, P., Rosen, N. & Solit, D. B. Tumour adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kosaka, K. et al. Emergence of resistant variants detected by ultra-deep sequencing after asunaprevir and daclatasvir combination therapy in patients infected with hepatitis C virus genotype 1. J. Viral. Hepat. 22, 158–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. De Mattos-Arruda, L. et al. Capturing intra-tumour genetic heterogeneity by de novo mutation profiling of circulating cell-free tumour DNA: a proof-of-principle. Ann. Oncol. 25, 1729–1735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signalling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Atzori, F. et al. A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-insulin-like growth factor-1 receptor monoclonal antibody, in patients with advanced solid tumours. Clin. Cancer Res. 17, 6304–6312 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, X. et al. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol. Cancer Res. 11, 1269–1278 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  83. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  85. Besse, B. et al. Neratinib (N) with or without temsirolimus (TEM) in patients (pts) with non-small cell lung cancer (NSCLC) carrying HER2 somatic mutations: an international randomized phase II study [abstract]. Ann. Oncol. 25, LBA39 (2014).

    Google Scholar 

  86. Hyman, D. M. et al. VE-BASKET, a first-in-kind, phase II, histology-independent “basket” study of vemurafenib (VEM) in nonmelanoma solid tumours harbouring BRAF V600 mutations (V600m) [abstract]. J. Clin. Oncol. 32 (Suppl. 5), a2533 (2014).

    Article  Google Scholar 

  87. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  88. Zardavas, D. et al. The AURORA initiative for metastatic breast cancer. Br. J. Cancer 111, 1881–1887 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  90. Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, E. S. et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumour cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Singh, V. M. et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann. Diagn. Pathol. 17, 322–326 (2013).

    Article  PubMed  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  96. US National Library of Medicine. ClinicalTrials.gov[online], (2015).

  97. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

Download references

Acknowledgements

S.L. is supported by Cancer Council Victoria and the National Health and Medical Research Council of Australia (NHMRC). F.A. is supported by Grants from the ARC, Breast cancer Research Foundation, Odyssea and Operation Parrains Chercheurs.

Author information

Authors and Affiliations

Authors

Contributions

H.B. and F.A. developed the outline; F.A. wrote the sections related to genomics and modalities of development. All authors made a significant contribution to writing the manuscript, reviewing and/or editing the manuscript and approved the final version before submission.

Corresponding author

Correspondence to Fabrice Andre.

Ethics declarations

Competing interests

F.A. receives honourarium and has a research contract with AstraZeneca and Novartis. M.A. receives honourarium from Novartis. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnedos, M., Vicier, C., Loi, S. et al. Precision medicine for metastatic breast cancer—limitations and solutions. Nat Rev Clin Oncol 12, 693–704 (2015). https://doi.org/10.1038/nrclinonc.2015.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.123

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer