Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The landscape of new drugs in lymphoma

Key Points

  • The availability of novel small-molecule inhibitors and immunotherapies has changed the landscape of drug development in lymphoma

  • The most effective small-molecule inhibitors target B-cell-receptor signalling, PI3K signalling, and the BCL2 protein

  • Multiple immunotherapy platforms have demonstrated promising clinical activity, including immune-checkpoint inhibitors, CAR T cells, and bispecific antibodies

  • Many companies are developing similar drugs, which inhibit the same target, necessitating a more focused drug development strategy, with prioritization of clinical investigations

  • Owing to the high number of drugs in development, the potential number of drug combinations is becoming unmanageable; prioritization should focus on mechanism-based combinations that are potentially safer and more effective

Abstract

The landscape of drugs for the treatment of lymphoma has become crowded in light of the plethora of new agents, necessitating the efficient prioritization of drugs for expedited development. The number of drugs available, and the fact that many can be given for an extended period of time, has resulted in the emergence of new challenges; these include determining the optimal duration of therapy, and the need to balance costs, benefits, and the risk of late-onset toxicities. Moreover, with the increase in the number of available investigational drugs, the number of possible combinations is becoming overwhelming, which necessitates prioritization plans for the selective development of novel combination regimens. In this Review, we describe the most-promising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic targeting of the B-cell receptor (BCR) signalling pathway in patients with lymphoma.
Figure 2: Therapeutic targeting of the PI3K/AKT/mTOR pathway.
Figure 3: Therapeutic induction of cell death through targeting of the mitochondrial apoptosis pathway.
Figure 4: Autologous T-cell activation strategies.
Figure 5: A representative high-throughput screening experiment involving drug combinations with the BET inhibitor JQ1.

Similar content being viewed by others

References

  1. DeFrancesco, L. Drug pipeline Q4 2015. Nat. Biotechnol. 34, 128 (2016).

    CAS  PubMed  Google Scholar 

  2. Wilson, W. H. et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 21, 922–926 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedberg, J. W. et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 115, 2578–2585 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dreyling, M. et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet 387, 770–778 (2016).

    CAS  PubMed  Google Scholar 

  6. Byrd, J. C. et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med. 371, 213–223 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Treon, S. P. et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N. Engl. J. Med. 372, 1430–1440 (2015).

    CAS  PubMed  Google Scholar 

  8. Younes, A. et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 15, 1019–1026 (2014).

    CAS  PubMed  Google Scholar 

  9. Bartlett, N. L. et al. Ibrutinib monotherapy in relapsed/refractory follicular lymphoma (FL): preliminary results of a phase 2 consortium (P2C) trial. Blood 124, 800 (2014).

    Google Scholar 

  10. Christian, B. et al. A phase I study of ibrutinib and lenalidomide in patients with relapsed and refractory B-cell non-hodgkin's lymphoma. Blood 124, 4476 (2014).

    Google Scholar 

  11. Fowler, N. et al. Ibrutinib plus rituximab in treatment-naive patients with follicular lymphoma: results from a multicenter, phase 2 study. Blood 126, 470 (2015).

    Google Scholar 

  12. Ujjani, C. S. et al. Phase I study of rituximab, lenalidomide, and ibrutinib in previously untreated follicular lymphoma (alliance 051103). Blood 126, 471 (2015).

    Google Scholar 

  13. Woyach, J. A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Cao, Y. et al. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88L265P-directed survival signalling in Waldenstrom macroglobulinaemia cells. Br. J. Haematol. 168, 701–707 (2015).

    CAS  PubMed  Google Scholar 

  15. Advani, R. H. et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol. 31, 88–94 (2013).

    CAS  PubMed  Google Scholar 

  16. Mohamed, A. J. et al. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 228, 58–73 (2009).

    CAS  PubMed  Google Scholar 

  17. Readinger, J. A., Mueller, K. L., Venegas, A. M., Horai, R. & Schwartzberg, P. L. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol. Rev. 228, 93–114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreotti, A. H., Schwartzberg, P. L., Joseph, R. E. & Berg, L. J. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb. Perspect. Biol. 2, a002287 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Dubovsky, J. A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 122, 2539–2549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 371, 323–332 (2015).

    Google Scholar 

  21. Tam, C. et al. The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/ refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood 126, 832 (2015).

    Google Scholar 

  22. Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Coutré, S. E. et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk. Lymphoma 56, 2779–2786 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Khan, K. H. et al. Hyperglycemia and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) inhibitors in phase I trials: incidence, predictive factors, and management. Oncologist 21, 855–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiron, D. et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Cancer Discov. 4, 1022–1035 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Choudhary, G. S. et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 6, e1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Forero-Torres, A. et al. A phase 1 study of INCB040093, a PI3Kδ inhibitor, alone or in combination with INCB039110, a selective JAK1 inhibitor: interim results from patients (pts) with relapsed or refractory (r/r) classical Hodgkin lymphoma (cHL). ASCO Meeting Abstracts 33 (Suppl. 15), 8558 (2015).

    Google Scholar 

  28. Gaudio, E. et al. Combination of the MEK inhibitor pimasertib with BTK or PI3K-δ inhibitors is active in preclinical models of aggressive lymphomas. Ann. Oncol. 27, 1123–1128 (2016).

    CAS  PubMed  Google Scholar 

  29. Lee, J. S., Tang, S. S., Ortiz, V., Vo, T. T. & Fruman, D. A. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. Oncotarget 6, 35202–35217 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Younes, A. et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol. 17, 622–631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheah, C. Y. et al. Lenalidomide, idelalisib, and rituximab are unacceptably toxic in patients with relapsed/refractory indolent lymphoma. Blood 125, 3357–3359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, D. R. A BH3 mimetic for killing cancer cells. Cell 165, 1560 (2016).

    CAS  PubMed  Google Scholar 

  33. Davids, M. S. & Letai, A. ABT-199: taking dead aim at BCL-2. Cancer Cell 23, 139–141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts, A. W. et al. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies. Br. J. Haematol. 170, 669–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    CAS  PubMed  Google Scholar 

  37. Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Jones, J. et al. Preliminary results of a phase 2, open-label study of venetoclax (ABT-199/GDC-0199) monotherapy in patients with chronic lymphocytic leukemia relapsed after or refractory to ibrutinib or idelalisib therapy. Blood 126, 715 (2015).

    Google Scholar 

  39. Gerecitano, J. F. et al. A phase 1 study of venetoclax (ABT-199 / GDC-0199) monotherapy in patients with relapsed/refractory non-Hodgkin lymphoma. Blood 126, 254 (2015)

    Google Scholar 

  40. Phillips, D. C. et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 5, e368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oppermann, S. et al. Identification of kinase inhibitors that overcome venetoclax resistance in activated CLL cells by high-content screening. Blood 128, 934–947 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Derenzini, E. & Younes, A. Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib. Expert Opin. Investig. Drugs 22, 775–785 (2013).

    CAS  PubMed  Google Scholar 

  43. O'Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Younes, A. et al. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. J. Clin. Oncol. 30, 4161–4167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blunt, M. D. et al. The Syk\\Jak inhibitor cerdulatinib shows promising preclinical activity in chronic lymphocytic leukemia by antagonising B cell receptor and microenvironmental signalling. Blood 126, 1716 (2015).

    Google Scholar 

  46. Leeds, J. M. et al. Abstract CT144: preclinical and clinical studies and modeling and simulation to identify phase II dose for cerdulatinib: a dual SYK/JAK inhibitor for the treatment of B-cell malignancies. Cancer Res. 76 (Suppl 14), CT144 (2016).

    Google Scholar 

  47. Gribben, J. G., Fowler, N. & Morschhauser, F. Mechanisms of action of lenalidomide in B-cell non-Hodgkin lymphoma. J. Clin. Oncol. 33, 2803–2811 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Witzig, T. E. et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin's Lymphoma. J. Clin. Oncol. 27, 5404–5409 (2009).

    CAS  PubMed  Google Scholar 

  49. Vose, J. M. et al. Single-agent lenalidomide is active in patients with relapsed or refractory aggressive non-Hodgkin lymphoma who received prior stem cell transplantation. Br. J. Haematol. 162, 639–647 (2013).

    CAS  PubMed  Google Scholar 

  50. Witzig, T. E. et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. Ann. Oncol. 22, 1622–1627 (2011).

    CAS  PubMed  Google Scholar 

  51. Goy, A. et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J. Clin. Oncol. 31, 3688–3695 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fowler, N. H. et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol. 15, 1311–1318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, M. et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol. 13, 716–723 (2012).

    PubMed  Google Scholar 

  54. Ruan, J. et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N. Engl. J. Med. 373, 1835–1844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nowakowski, G. S. et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non–germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study. J. Clin. Oncol. 33, 251–257 (2015).

    CAS  PubMed  Google Scholar 

  56. Vitolo, U. et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol. 15, 730–737 (2014).

    CAS  PubMed  Google Scholar 

  57. Batlevi, C. L., Matsuki, E., Brentjens, R. J. & Younes, A. Novel immunotherapies in lymphoid malignancies. Nat. Rev. Clin. Oncol. 13, 25–40 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Campbell, M. T., Siefker-Radtke, A. O. & Gao, J. The state of immune checkpoint inhibition in urothelial carcinoma: current evidence and future areas of exploration. Cancer J. 22, 96–100 (2016).

    CAS  PubMed  Google Scholar 

  60. Naidoo, J., Page, D. B. & Wolchok, J. D. Immune checkpoint blockade. Hematol. Oncol. Clin. North Am. 28, 585–600 (2014).

    PubMed  Google Scholar 

  61. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ansell, S. M. et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 15, 6446–6453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Armand, P. et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol. 31, 4199–4206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Westin, J. R. et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 15, 69–77 (2014).

    CAS  PubMed  Google Scholar 

  65. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    PubMed  Google Scholar 

  66. Armand, P. et al. PD-1 Blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: safety, efficacy, and biomarker assessment. Blood 126, 584 (2015).

    Google Scholar 

  67. Zinzani, P. L. et al. Phase 1b study of PD-1 blockade with pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma (PMBCL). Blood 126, 3986 (2015).

    Google Scholar 

  68. Younes, A. et al. Checkmate 205: Nivolumab (nivo) in classical Hodgkin lymphoma (cHL) after autologous stem cell transplant (ASCT) and brentuximab vedotin (BV)—A phase 2 study. ASCO Meeting Abstracts 34 (Suppl 15), 7535 (2016).

    Google Scholar 

  69. Lesokhin, A. M. et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J. Clin. Oncol. 34, 2698–2704 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Till, B. G. et al. Safety and clinical activity of atezolizumab (anti-PDL1) in combination with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma. Blood 126, 5104 (2015).

    Google Scholar 

  71. Sagiv-Barfi, I. et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc. Natl. Acad. Sci. USA 112, E966–E972 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    CAS  PubMed  Google Scholar 

  73. Ramos, C. A., Heslop, H. E. & Brenner, M. K. CAR-T cell therapy for lymphoma. Annu. Rev. Med. 67, 165–183 (2016).

    CAS  PubMed  Google Scholar 

  74. Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest. 125, 3392–3400 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013).

    Google Scholar 

  76. Schuster, S. J. et al. Sustained remissions following chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. Blood 126, 183 (2015).

    Google Scholar 

  77. Ryan, M. et al. SGN-CD198, a pyrrolobenzodiazepine (PBD)-based anti-CD19 drug conjugate, demonstrates potent preclinical activity against B-cell malignacies. Blood 126, (2015).

  78. McCombs, J. R. & Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 17, 339–351 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363, 1812–1821 (2010).

    CAS  PubMed  Google Scholar 

  80. Advani, A. et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J. Clin. Oncol. 28, 2085–2093 (2010).

    CAS  PubMed  Google Scholar 

  81. Advani, R. et al. A phase I study of DCDT2980S, an antibody-drug conjugate (ADC) targeting CD22, in relapsed or refractory B-cell non-Hodgkin's lymphoma (NHL). Abs 59. Blood 120, 59 (2012).

    Google Scholar 

  82. Ribrag, V. et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 20, 213–220 (2014).

    CAS  PubMed  Google Scholar 

  83. Palanca-Wessels, M. C. et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 16, 704–715 (2015).

    CAS  PubMed  Google Scholar 

  84. Bartlett, N. et al. A phase 2 study of Brentuximab Vedotin in patients with relapsed or refractory CD30-positive non-Hodgkin lymphomas: interim results in patients with DLBCL and other B-cell lymphomas. Blood 122, 848 (2013).

    Google Scholar 

  85. Bartlett, N. L. et al. Brentuximab vedotin monotherapy in DLBCL patients with undetectable CD30: preliminary results from a phase 2 study. Blood 124, 629 (2014).

    Google Scholar 

  86. Forero-Torres, A. et al. Interim analysis of a phase 1, open-label, dose-escalation study of SGN-CD19A in patients with relapsed or refractory B-lineage non-Hodgkin lymphoma (NHL). J. Clin. Oncol. 32 (Suppl 5), 8505 (2014).

    Google Scholar 

  87. Morschhauser, F. et al. Preliminary results of a phase II randomized study (ROMULUS) of polatuzumab vedotin (PoV) or pinatuzumab vedotin (PiV) plus rituximab (RTX) in pts with relapsed/refractory non-Hodgkin lymphoma. J. Clin. Oncol. 32 (Suppl 5), 8519 (2014).

    Google Scholar 

  88. Jung, M., Gelato, K. A., Fernandez-Montalvan, A., Siegel, S. & Haendler, B. Targeting BET bromodomains for cancer treatment. Epigenomics 7, 487–501 (2015).

    CAS  PubMed  Google Scholar 

  89. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Boi, M. et al. The BET bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell tumor models and synergizes with targeted drugs. Clin. Cancer Res. 21, 1628–1638 (2015).

    CAS  PubMed  Google Scholar 

  91. Amorim, S. et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 3, e196–204 (2016).

    PubMed  Google Scholar 

  92. Abramson, J. S. et al. BET inhibitor CPI-0610 is well tolerated and induces responses in diffuse large B-cell lymphoma and follicular lymphoma: preliminary analysis of an ongoing phase 1 study. Blood 126, 1491 (2015).

    Google Scholar 

  93. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Beguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Velichutina, I. et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116, 5247–5255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl. Acad. Sci. USA 109, 21360–21365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    CAS  PubMed  Google Scholar 

  98. Ribrag, V. et al. Phase 1 study of tazemetostat (EPZ-6438), an inhibitor of enhancer of zeste-homolog 2 (EZH2): Preliminary safety and activity in relapsed or refractory non-Hodgkin lymphoma (NHL) patients. Blood 126, 473 (2015).

    Google Scholar 

  99. Younes, A. Beyond chemotherapy: new agents for targeted treatment of lymphoma. Nat. Rev. Clin. Oncol. 8, 85–96 (2011).

    CAS  PubMed  Google Scholar 

  100. Intlekofer, A. M. & Younes, A. Precision therapy for lymphoma—current state and future directions. Nat. Rev. Clin. Oncol. 11, 585–596 (2014).

    CAS  PubMed  Google Scholar 

  101. Armand, P. et al. Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma. Br. J. Haematol. 163, 123–126 (2013).

    CAS  PubMed  Google Scholar 

  102. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

    Google Scholar 

  103. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  104. Faham, M. et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120, 5173–5180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Arnold, A. et al. Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms. N. Engl. J. Med. 309, 1593–1599 (1983).

    CAS  PubMed  Google Scholar 

  106. Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 16, 541–549 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article, contributed to discussion of the content, wrote the manuscript and reviewed/edited the article before submission.

Corresponding author

Correspondence to Anas Younes.

Ethics declarations

Competing interests

A.Y. receives honouraria and/or consults for Abbvie, Bayer, BMS, Celgene, Gilead, Incyte, Janssen R&D, Sanofi, Seattle Genetics, Merck, and Takeda Millenium, and research support from the John and Barbara Vogelstein Foundation. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, A., Ansell, S., Fowler, N. et al. The landscape of new drugs in lymphoma. Nat Rev Clin Oncol 14, 335–346 (2017). https://doi.org/10.1038/nrclinonc.2016.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing