Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BCL-2 family antagonists for cancer therapy

Key Points

  • The intrinsic pathway to apoptotic cell death converges on events at the mitochondrial outer membrane where interactions between the extended BCL-2 family of proteins determine the fate of the cell. The detailed mechanisms by which pro-survival and anti-survival factions of the family perform their roles remain under investigation.

  • There is now compelling evidence that cell death can be triggered by agents that mimic the action of a helical peptide in binding to the pro-survival family members. The target for these putative cytotoxic agents, an extended groove on the surface of the pro-survival BCL-2 family proteins, is a protein–protein interaction site, presenting particular challenges to drug discovery.

  • Cytotoxic activity does not necessarily require direct antagonism of the BCL-2 family, presenting challenges to establishing the mode of action.

  • More than a dozen candidate chemical classes have been claimed to antagonize one or more of the members of the pro-survival BCL-2 protein family. Most of these discoveries have come from screening compound libraries of one type or another. Design work has been limited to constrained helical peptides, terphenyls and benzoylureas, but only the helical peptides have interesting potency. Among the screening hits, many seem to exert their cytotoxicity through a non-apoptotic pathway.

  • Compounds that have progressed into clinical trials include GX15-070 (GeminX), AT-101 (Ascenta) and ABT-263 (Abbott). For only one of these three compound classes (ABT-263) is structural data currently available to guide further refinement of binding affinity and pharmacological properties.

  • GX15-070 (IC50 of the order of 1 μM for its BCL-2 targets) is effective as a single agent in killing multiple cancer cell lines in vitro and in vivo, and is administered intravenously in clinical trials against various haematological malignancies. This compound has also been shown to cause cell-cycle arrest, at concentrations lower than those that induce apoptosis. Further evaluation of its mechanism of action is needed.

  • AT-101 (IC50 of the order of 200 nM for its BCL-2 targets), the (–) enantiomer of gossypol, has similar in vitro cytotoxicity to GX15-070 and is administered orally in clinical studies for treatment of chronic lymphocytic leukaemia. Its mechanism of action is called into question by reports that gossypol kills cells lacking the apoptotic killers BAK and BAX.

  • ABT-263 (IC50 of the order of 1 nM for its BCL-2 targets), an orally available analogue of ABT-737, is insensitive to cells lacking BAK and BAX. It shows single-agent activity against various haematological tumours and small-cell lung carcinomas that have low levels of the pro-survival family member MCL1, to which ABT-263 shows no appreciable binding.

  • The mechanism of action of a bona fide BCL-2 family antagonist should be established by four criteria. One, cell-killing must be BAK/BAX dependent. Two, binding affinity for the relevant BCL-2 family targets should be in the low nanomolar range, similar to their physiological ligands. Three, the binding profile of the antagonist to the five pro-survival BCL-2 family members should correlate with cellular activity and expression levels of these proteins. Four, treatment of animals with the antagonist should trigger relevant biomarkers that correlate with the binding profile of the drug and the known biological roles of the five pro-survival family members.

Abstract

Overexpression of members of the BCL-2 family of pro-survival proteins is commonly associated with unfavourable pathogenesis in cancer. The convergence of cytotoxic stress signals on the extended BCL-2 protein family provides the biological rationale for directly targeting this family to induce apoptotic cell death. Recently, several compounds have been described that inhibit the interaction between BCL-2 family members and their natural ligand, a helical peptide sequence known as the BH3 domain. Here, we review preclinical and clinical data on these compounds, and recommend four criteria that define antagonists of the BCL-2 protein family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The extended BCL-2 protein family.
Figure 2: Structures of pro-survival proteins with BH3 ligands.
Figure 3: Interactions between proteins of the extended BCL-2 family determine the integrity of the outer mitochondrial membrane.
Figure 4: BH3 domain sequences of BH3-only proteins and their pro-survival protein binding targets.
Figure 5: Interactions between pro-survival BCL-2 proteins and BH3 ligands as exemplified by the MCL1–BIM BH3 complex.
Figure 6: Structural studies related to the discovery of ABT-737.

Similar content being viewed by others

References

  1. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988). The discovery of the pro-survival function of BCL-2.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  3. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  5. Kvansakul, M. et al. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ. 15, 1564–1571 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, D. C. & Strasser, A. BH3-only proteins — essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996). The BCL-2 fold is revealed, together with the locations of the BH domains.

    Article  CAS  PubMed  Google Scholar 

  8. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997). The BH3 domain of a pro-apoptotic protein is seen to bind in a groove on a pro-survival protein, establishing the paradigm for interactions between family members.

    Article  CAS  PubMed  Google Scholar 

  9. Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    CAS  PubMed  Google Scholar 

  11. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Oberstein, A., Jeffrey, P. D. & Shi, Y. G. Crystal structure of the Bcl-X-L–beclin 1 peptide complex — Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282, 13123–13132 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Maiuri, M. C. et al. Functional and physical interaction between Bcl-X-L and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levine, B. Cell biology — autophagy and cancer. Nature 446, 745–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K. & Korsmeyer, S. J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 14, 23–27 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ross, A. J. et al. Testicular degeneration in Bclw-deficient mice. Nature Genet. 18, 251–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005). Some of the BH3-only proteins bind promiscuously to pro-survival proteins, others selectively. Broad neutralization of pro-survival family members is needed for effective cell death.

    Article  CAS  PubMed  Google Scholar 

  25. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  28. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nature Rev. Cancer 5, 876–885 (2005).

    Article  CAS  Google Scholar 

  30. Warr, M. R. & Shore, G. C. Unique biology of Mcl-1: therapeutic opportunities in cancer. Curr. Mol. Med. 8, 138–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Derenne, S. et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or BCI-xL is an essential survival protein of human myeloma cells. Blood 100, 194–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Alvi, A. J. et al. A novel CDK inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-dependent apoptosis in B-CLL by down-regulation of genes involved in transcription regulation and survival. Blood 105, 4484–4491 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000).

    CAS  PubMed  Google Scholar 

  34. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, E. F. et al. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J. Cell Biol. 180, 341–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petros, A. M. et al. Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci. 9, 2528–2534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walensky, L. D. et al. A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell 24, 199–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sadowsky, J. D. et al. (α/β+α)-peptide antagonists of BH3 domain/Bcl-xL recognition: toward general strategies for foldamer-based inhibition of protein–protein interactions. J. Am. Chem. Soc. 129, 139–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kutzki, O. et al. Development of a potent Bcl-xL antagonist based on α-helix mimicry. J. Am. Chem. Soc. 124 11838–11839 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Davis, J. M., Truong, A. & Hamilton, A. D. Synthesis of a 2,3′;6′,3′′-terpyridine scaffold as an α-helix mimetic. Org. Lett. 7, 5405–5408 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, H. & Hamilton, A. D. Terephthalamide derivatives as mimetics of the helical region of Bak peptide target Bcl-xL protein. Bioorg. Med. Chem. Lett. 14, 1375–1379 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Lessene, G. L. & Baell, J. B. Alpha-helical mimetics. US2008153802 (2008).

  44. Degterev, A. et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nature Cell Biol. 3, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, J. L. et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl Acad. Sci. USA 97, 7124–7129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Enyedy, I. J. et al. Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 44, 4313–4324 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Tzung, S. P. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nature Cell Biol. 3, 183–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Chan, S.-L. et al. Identification of chelerythrine as an inhibitor of BclXL function. J. Biol. Chem. 278, 20453–20456 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Kitada, S. et al. Discovery, characterization, and structure–activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem. 46, 4259–4264 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Leone, M. et al. Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63, 8118–8121 (2003).

    CAS  PubMed  Google Scholar 

  51. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006). Unlike ABT-737, many of the putative BCL-2 antagonists are sensitive on cells containing neither BAK nor BAX, suggesting that they do not kill by apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baell, J. B. & Huang, D. C. Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxuc drugs. Biochem. Pharmacol. 64, 851–863 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Crawford, N. & Fennell, D. A. Small molecule de-repression of BAX and BAK oligomerization as a strategy for treating cancer. Lett. Drug Design Discov. 3, 534–540 (2006).

    Article  CAS  Google Scholar 

  54. Murthy, M. S. et al. A small molecule inhibitor of BCL-2 protein–protein interactions specifically induces apoptosis in cancer cells. Clin. Cancer Res. 7, 3717S (2001).

    Google Scholar 

  55. Perez-Galan, P., Roue, G., Villamor, N., Campo, E. & Colomer, D. The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood 109, 4441–4449 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Zhai, D., Jin, C., Satterthwait, A. C. & Reed, J. C. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ. 13, 1419–1421 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Reed, J. C. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. 13, 1378–1386 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen, M. et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl Acad Sci. USA 104, 19512–19517 (2007). Molecular and cellular data supporting a role for GX15-070 in antagonizing MCL1.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, J., Viallet, J. & Haura, E. B. A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother. Pharmacol. 61, 525–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Dong, S. et al. Targeting 14-3-3 sensitizes native and mutant BCR–ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070 Leukemia 22, 572–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Witters, L. M. et al. Synergistic inhibition of breast cancer cell lines with a dual inhibitor of EGFR-HER-2/neu and a Bcl-2 inhibitor. Oncol. Rep. 17, 465–469 (2007).

    CAS  PubMed  Google Scholar 

  62. Konopleva, M. et al. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res. 68, 3413–3420 (2008). GX15-070 causes cell-cycle arrest at concentrations 30-times lower than the IC 50 for induction of apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bebb, D., Muzik, H., Nguen, S., Chen, S. & Morris, D. GX15-070 enhances the anti-lymphoma effect of vinorelbine in a murine model of mantle cell lymphoma. Ann. Oncol. 18, 34 (2007).

    Google Scholar 

  64. Schimmer, A. D. et al. A phase I trial of the small molecule Pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by continuous infusion for up to four days to patients with hematological malignancies. Blood 110, 272A (2007).

    Google Scholar 

  65. Borthakur, G. et al. Phase I trial of the small molecule Pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by 24 hour infusion every 2 weeks to patients with myeloid malignancies and, chronic lymphocytic leukemia (CLL). Blood 108, 750A (2006).

    Google Scholar 

  66. Verstovsek, S., Raza, A., Schimmer, A. D., Viallet, J. & Kantarjian, H. A phase II trial of the small molecule pan-Bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by a 24-h continuous infusion every 2 weeks to patients with chronic idiopathic myelofibrosis (CIMF). Blood 110, 1040A (2007).

    Google Scholar 

  67. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008). Preclinical data for ABT-263 provide grounds for clinical evaluation against small-cell lung cancer and B-cell malignancies.

    Article  CAS  PubMed  Google Scholar 

  68. Dodou, K., Anderson, R. J., Small, D. A. & Groundwater, P. W. Investigations on gossypol: past and present developments. Expert Opin. Investig. Drugs 14, 1419–1434 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Qiu, J. P., Levin, L. R., Buck, J. & Reidenberg, M. M. Different pathways of cell killing by gossypol enantiomers. Exp. Biol. Med. 227, 398–401 (2002).

    Article  CAS  Google Scholar 

  70. Tang, G. Z. et al. Acylpyrogallols as inhibitors of antiapoptotic Bcl-2 proteins. J. Med. Chem. 51, 717–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Paoluzzi, L. et al. Targeting antiapoptotic Bcl-2 family members with AT-101 in pre-clinical models of aggressive lymphoma in combination with cyclophosphamide (C) and rituximab (R) produces a marked improvement in therapeutic efficacy. Blood 106, 680A–681A (2005).

    Google Scholar 

  72. Kumar, S. et al. AT-101, a small molecule inhibitor of Bcl-2 family proteins, has significant in vitro activity in multiple myeloma. Blood 106, 453A–454A (2005).

    Google Scholar 

  73. James, D. F., Prada, C. E., Castro, J. E. & Kipps, T. J. AT 101, an inhibitor of Bcl-2 family members is cytotoxic to a heterogeneous group of CLL samples and synergistic with rituximab. Blood 106, 835A (2005).

    Article  CAS  Google Scholar 

  74. James, D. F. et al. AT-101, a small molecule Bcl-2 antagonist, in treatment naive CLL patients (pts) with high risk features; preliminary results from an ongoing phase I trial. J. Clin. Oncol. 24, 362S (2006).

    Google Scholar 

  75. Castro, J. E. et al. A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Evaluation of two dose regimens. Blood 110, 917A–918A (2007).

    Google Scholar 

  76. Castro, J. E. et al. A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood 108, 803A (2006).

    Google Scholar 

  77. Lei, X. B. et al. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J. 20, 2147–2149 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, G. P. et al. Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J. Med. Chem. 49, 6139–6142 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Tang, G. Z. et al. Structure-based design of flavonoid compounds as a new class of small-molecule inhibitors of the anti-apoptotic bcl-2 proteins. J. Med. Chem. 50, 3163–3166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Verhaegen, M. et al. A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res. 66, 11348–11359 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Zeitlin, B. D. et al. Antiangiogenic effect of TW37, a small-molecule inhibitor of Bcl-2. Cancer Res. 66, 8698–8706 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Arnold, A. A. et al. Preclinical studies of apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-X-L and Mcl-1 proteins in follicular small cleaved cell lymphoma model. Mol. Cancer 7, 20–30 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Castro, C. C. et al. Compounds and methods for inhibiting the interaction of bcl proteins with binding partners WO2008060569 (2008).

  85. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). The discovery of ABT-737 from fragment screening and structure-guided design to improve potency and pharmacological properties. Efficacy against solid tumours in animal models is demonstrated.

    CAS  PubMed  Google Scholar 

  86. Petros, A. M. et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J. Med. Chem. 49, 656–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wendt, M. D. et al. Discovery and structure–activity relationship of antagonists of B-cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J. Med. Chem. 49, 1165–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Shoemaker, A. R. et al. A small-molecule inhibitor of Bcl-X-L potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res. 66, 8731–8739 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Bruncko, M. et al. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem. 50, 641–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14, 1711–1713 (2007). Description of the structure of the complex between ABT-737 and BCL-X L , and a rationale for its failure to bind MCL1.

    Article  CAS  PubMed  Google Scholar 

  91. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  93. Vaux, D. L. ABT-737, proving to be a great tool even before it is proven in the clinic. Cell Death Differ. 15, 807–808 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Chen, S., Dai, Y., Harada, H., Dent, P. & Grant, S. Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 67, 782–791 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Tahir, S. K. et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res. 67, 1176–1183 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Lin, X. et al. 'Seed' analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-X-L inhibitor ABT-737. Oncogene 26, 3972–3979 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Vogler, M. et al. A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ. 15, 820–830 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kline, M. P. et al. ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells. Leukemia 21, 1549–1560 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Lock, R. et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr. Blood Cancer 50, 1181–1189 (2008).

    Article  PubMed  Google Scholar 

  101. Shoemaker, A. R. et al. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin. Cancer Res. 14, 3268–3277 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Mason, K. D. et al. The delicate balance between pro survival BCL XL and pro apoptotic BAK determines platelet life span. Exp. Hematol. 35 (Suppl. 2), 33–33 (2007).

    Google Scholar 

  103. Zhang, H. et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 14, 943–951 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Labi, V., Erlacher, M., Kiessling, S. & Villunger, A. BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ. 13, 1325–1338 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kuroda, J. et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc. Natl Acad. Sci. USA 103, 14907–14912 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, R., Moudgil, T., Ross, H. J. & Hu, H. M. Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ. 12, 292–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, E. F. et al. EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency. Cell Death Differ. 15, 1609–1618 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Yin, H. & Hamilton, A. D. Strategies for targeting protein–protein interactions with synthetic agents. Angewandte Chemie Int. Ed. 44, 4130–4163 (2005).

    Article  CAS  Google Scholar 

  109. Colman, P. M. in Structure-Based Drug Discovery — An Overview (ed. Hubbard, R. E.) 193–218 (The Royal Society of Chemistry Publishing, Cambridge, 2006).

    Google Scholar 

  110. Hinds, M. G. et al. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ. 14, 128–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Hinds, M. G. & Day, C. L. Regulation of apoptosis: uncovering the binding determinants. Curr. Opin. Struct. Biol. 15, 690–699 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Petros, A. M., Olejniczak, E. T. & Fesik, S. W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta 1644, 83–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Smits, C., Czabotar, P. E., Hinds, M. G. & Day, C. L. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 16, 818–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Czabotar, P. E. et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl Acad. Sci. USA 104, 6217–6222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, X., Dai, S., Zhu, Y., Marrack, P. & Kappler, J. The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19, 341–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Day, C. L. et al. Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J. Biol. Chem. 280, 4738–4744 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with D. Huang and many other colleagues at The Walter and Eliza Hall Institute of Medical Research including J. Adams, J. Baell, S. Cory, D. Fairlie, E. Lee and K. Watson. Work in the authors' laboratories is supported by the National Health and Medical Research Council (Australia), The Leukemia and Lymphoma Society (USA), The Cancer Council of Victoria and The Australian Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The Walter and Eliza Hall Institute of Medical Research has an ongoing research collaboration agreement with Genentech and Abbott in the field of apoptosis, specifically BCL-2 family proteins.

Related links

Related links

FURTHER INFORMATION

NCI's clinical trial results

Glossary

Mitochondrial pathway to programmed cell death

This pathway is activated by intracellular stresses and developmental cues. Also known as the intrinsic or stress pathway, it is regulated by the extended BCL-2 protein family. By contrast, the extrinsic apoptotic pathway is activated by cell-surface death receptors.

Caspase cascade

A proteolytic cascade that is initiated by both the mitochondrial pathway and the extrinsic pathway.

Autophagy

A cellular stress response in which non-vital cell components are broken down to provide nutrients for vital processes. Autophagy may also serve as an alternative non-apoptotic mechanism for cell death under certain conditions.

Lymphopaenia

A condition marked by lower than normal circulating lymphocytes.

Thrombocytopaenia

A decrease in platelet count, defined in humans as less than 150 million per ml, which results in the potential for increased bleeding.

Endoplasmic reticulum stress

Cellular disturbances causing an accumulation of unfolded proteins in the endoplasmic reticulum, which results in activation of the unfolded protein response.

Metathesis reaction

A transition metal-catalysed reaction used to manipulate alkenes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessene, G., Czabotar, P. & Colman, P. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7, 989–1000 (2008). https://doi.org/10.1038/nrd2658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing