Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HDL-targeted therapies: progress, failures and future

Key Points

  • The association of low plasma high-density lipoprotein cholesterol (HDL-C) concentration with elevated cardiovascular disease risk is firmly established in men and women over a wide age range, across several cardiometabolic disease states, including type 2 diabetes, and in many populations and ethnic groups.

  • These associations underpinned the HDL hypothesis coined 40 years ago, stating that “a reduction of plasma HDL concentration may accelerate the development of atherosclerosis, and hence ischaemic heart disease, by impairing the clearance of cholesterol from the arterial wall”.

  • Although the hypothesis was about HDL particle concentration, the evidence for the idea was based on HDL-C concentration data, as there was no method of measuring the former at the time.

  • Genetic studies, including Mendelian randomization analysis, have shown that plasma HDL-C itself is not anti-atherogenic. However, genetic epidemiology has not yet been used to test the causality of low HDL particle number and coronary heart disease.

  • Two short-term clinical trials of the effects of intravenous reconstituted HDLs on coronary lesions in patients with acute coronary syndrome gave encouraging results, but failed to provide unequivocal evidence of benefit.

  • The small molecules tested to date in Phase III outcome trials do not specifically target HDL, and more specifically HDL particle number, and therefore the HDL hypothesis is yet to be tested. Three classes of agents that raise HDL-C in addition to lowering low-density lipoprotein (LDL) and/or plasma triglycerides have been tested. Although trial results with fibrates and niacin produced variable outcomes, meta-analyses supported the beneficial effects of both, although it was not possible to attribute them to HDL. Two trials of cholesteryl ester transfer protein (CETP) inhibitors have failed to show benefit, in one case possibly owing to an increase in blood pressure.

  • The interrelationships between HDL-C concentration, HDL particle number and HDL particle subpopulations of defined composition are complex, as are their relationships to reverse cholesterol transport and other anti-atherogenic properties. Nevertheless, an understanding of these relationships will be essential for the rational development of new HDL therapies.

  • Several novel approaches are under clinical development, including second-generation CETP inhibitors, new HDL infusion therapies, recombinant lecithin–cholesterol acyltransferase (LCAT) infusion therapy, and apolipoprotein A1 (APOA1) transcriptional upregulators.

  • Additional strategies to target HDL metabolism that are emerging include APOA1-mimetic peptides, liver X receptor agonists, farnesoid X receptor agonists, endothelial lipase inhibitors, antagonists of microRNAs and antisense oligonucleotides targeted at the genes that are implicated in HDL metabolism.

Abstract

Since the discovery in the 1970s that plasma levels of high-density lipoprotein cholesterol (HDL-C) are inversely associated with cardiovascular outcome, it has been postulated that HDL is anti-atherogenic and that increasing HDL-C levels is a promising therapeutic strategy. However, the recent failure of three orally active, HDL-C-raising agents has introduced considerable controversy, prompting the question of whether increasing the cholesterol cargo of HDL in a non-selective manner is an effective pharmacological approach for the translation of its atheroprotective and vasculoprotective activities. The interrelationships between HDL-C concentration, HDL particle number and levels of diverse HDL particle subpopulations of defined composition are complex, as are their relationships with reverse cholesterol transport and other anti-atherogenic functions. Such complexity highlights the incompleteness of our understanding of the biology of HDL particles. This article examines the HDL hypothesis in molecular and mechanistic terms, focusing on features that have been addressed, those that remain to be tested, and potential new targets for future pharmacological interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating plasma HDL elevation.
Figure 2
Figure 3: Intravascular metabolism of HDL.
Figure 4: Mechanism of action of HDL-raising therapies currently clinical trials.

Similar content being viewed by others

References

  1. Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barr, D. P., Russ, E. M. & Eder, H. A. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am. J. Med. 11, 480–493 (1951).

    Article  CAS  PubMed  Google Scholar 

  3. Gofman, J. W. Serum lipoproteins and the evaluation of atherosclerosis. Ann. NY Acad. Sci. 64, 590–595 (1956).

    Article  CAS  PubMed  Google Scholar 

  4. Gofman, J. W., Malamud, N., Simon, A., Waters, E. S. & Young, W. The interrelationship between cerebral and coronary atherosclerosis; a preliminary report. Geriatrics 11, 413–418 (1956).

    CAS  PubMed  Google Scholar 

  5. Miller, G. J. & Miller, N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1, 16–19 (1975). This is the original hypothesis in which it was proposed that CHD risk is inversely related to plasma HDL-C concentration owing to a function of HDL particles in the removal of cholesterol from developing atherosclerotic lesions.

    Article  CAS  PubMed  Google Scholar 

  6. Castelli, W. P. et al. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation 55, 767–772 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, N. E., Thelle, D. S., Forde, O. H. & Mjos, O. D. The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1, 965–968 (1977). This is the first published epidemiological study to provide prospective evidence that CHD risk is inversely related to HDL-C independently of LDL-C, plasma triglycerides and other CHD risk factors.

    Article  CAS  PubMed  Google Scholar 

  8. Assmann, G., Schulte, H., von Eckardstein, A. & Huang, Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 124, S11–S20 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Ishikawa, T., Fidge, N., Thelle, D. S., Forde, O. H. & Miller, N. E. The Tromso Heart Study: serum apolipoprotein AI concentration in relation to future coronary heart disease. Eur. J. Clin. Invest. 8, 179–182 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. McQueen, M. J. et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet 372, 224–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952 (2004).

    Article  PubMed  Google Scholar 

  12. Kuller, L. H., Grandits, G., Cohen, J. D., Neaton, J. D. & Prineas, R. Lipoprotein particles, insulin, adiponectin, C-reactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis 195, 122–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Mackey, R. H. et al. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol. 60, 508–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otvos, J. D. et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 113, 1556–1563 (2006). This is the first study to show that CHD risk is related to both HDL and LDL particle number.

    Article  CAS  PubMed  Google Scholar 

  15. Parish, S. et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF Heart Protection Study. Circulation 125, 2469–2478 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Mora, S., Glynn, R. J. & Ridker, P. M. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation 128, 1189–1197 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Van Lenten, B. J. et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 96, 2758–2767 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, Y. et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nature Med. 20, 193–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Rye, K. A. & Barter, P. J. Regulation of high-density lipoprotein metabolism. Circ. Res. 114, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Calkin, A. C. et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120, 2095–2104 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Murphy, A. J. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nature Med. 19, 586–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Kontush, A. et al. Preferential sphingosine-1 -phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler. Thromb. Vasc. Biol. 27, 1843–1849 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Patel, S. et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol. 53, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. de Souza, J. A. et al. Small, dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A-I. J. Cell. Mol. Med. 14, 608–620 (2010).

    CAS  PubMed  Google Scholar 

  25. Bisoendial, R. J. et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 107, 2944–2948 (2003).

    Article  PubMed  Google Scholar 

  26. Nieuwdorp, M. et al. Reconstituted HDL infusion restores endothelial function in patients with type 2 diabetes mellitus. Diabetologia 51, 1081–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spieker, L. E. et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105, 1399–1402 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Besler, C. et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest. 121, 2693–2708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barter, P. J. et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation 124, 555–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Drew, B. G. et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119, 2103–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Drew, B. G., Rye, K. A., Duffy, S. J., Barter, P. & Kingwell, B. A. The emerging role of HDL in glucose metabolism. Nature Rev. Endocrinol. 8, 237–245 (2012).

    Article  CAS  Google Scholar 

  32. Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Kontush, A. & Chapman, M. J. High-density lipoproteins: Structure, Metabolism, Function and Therapeutics (John Wiley and Sons, 2012). This is the most complete up-to-date text covering all aspects of HDL for basic scientists and physicians.

    Google Scholar 

  34. Reiner, Z. et al. ESC/EAS Guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  PubMed  Google Scholar 

  35. Assmann, G., Schulte, H., Cullen, P. & Seedorf, U. Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Munster (PROCAM) study. Eur. J. Clin. Invest. 37, 925–932 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. D'Agostino, R. B. Sr et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117, 743–753 (2008).

    Article  PubMed  Google Scholar 

  37. Rosenson, R. S. et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation 128, 1256–1267 (2013).

    Article  PubMed  Google Scholar 

  38. Gotto, A. M. Jr et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 101, 477–484 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Nicholls, S. J. et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol. 48, 715–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Sarwar, N. et al. Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 375, 1634–1639 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Nordestgaard, B. G. & Tybjaerg-Hansen, A. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk. Curr. Opin. Lipidol. 22, 113–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Varbo, A., Benn, M., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, while elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128, 1298–1309 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Banka, C. L. et al. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J. Lipid Res. 36, 1058–1065 (1995).

    CAS  PubMed  Google Scholar 

  44. Weichhart, T. et al. Serum amyloid A in uremic HDL promotes inflammation. J. Am. Soc. Nephrol. 23, 934–947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khovidhunkit, W. et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res. 45, 1169–1196 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Kontush, A. & Chapman, M. J. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58, 342–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Sharrett, A. R. et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104, 1108–1113 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Oldoni, F., Sinke, R. J. & Kuivenhoven, J. A. Mendelian disorders of high-density lipoprotein metabolism. Circ. Res. 114, 124–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pollin, T. I. et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322, 1702–1705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bochem, A. E. et al. ABCA1 mutation carriers with low high-density lipoprotein cholesterol are characterized by a larger atherosclerotic burden. Eur. Heart J. 34, 286–291 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, J. L. & Carlquist, J. F. Genetic polymorphisms of hepatic lipase and cholesteryl ester transfer protein, intermediate phenotypes, and coronary risk: do they add up yet? J. Am. Coll. Cardiol. 41, 1990–1993 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. van Acker, B. A. et al. High HDL cholesterol does not protect against coronary artery disease when associated with combined cholesteryl ester transfer protein and hepatic lipase gene variants. Atherosclerosis 200, 161–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Johannsen, T. H. et al. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J. Clin. Endocrinol. Metab. 94, 1264–1273 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012). This is the first study to test the causality of the relationship between CHD and HDL by genome-wide Mendelian randomization analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thompson, A. et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299, 2777–2788 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y. Y. et al. Apo A5 -1131T/C, FgB -455G/A, -148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects. Mol. Biol. Rep. 40, 1997–2014 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Dullaart, R. P. & Sluiter, W. J. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics 9, 747–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

    Article  PubMed  Google Scholar 

  59. Sleiman, P. M. & Grant, S. F. Mendelian randomization in the era of genomewide association studies. Clin. Chem. 56, 723–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ward, L. D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nature Biotech. 30, 1095–1106 (2012).

    Article  CAS  Google Scholar 

  61. Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/eht571 (2014).

  62. deGoma, E. M. & Rader, D. J. High-density lipoprotein particle number: a better measure to quantify high-density lipoprotein? J. Am. Coll. Cardiol 60, 517–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Castro, G. R. & Fielding, C. J. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry 27, 25–29 (1988). This study shows that the removal of cholesterol from cells is mediated by pre-β-HDLs, a minor lipid-poor subclass that is generated from the predominant cholesteryl ester-rich α-HDLs that account for almost all plasma HDL-C.

    Article  CAS  PubMed  Google Scholar 

  64. Camont, L. et al. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol. 33, 2715–2723 (2013). Using original methodology, this study has shown that the HDL lipidome strongly affects atheroprotective properties including cholesterol efflux capacity from human THP-1 macrophages, antioxidative activity towards LDL oxidation, antithrombotic activity in human platelets, cell-free anti-inflammatory activity and anti-apoptotic activity in endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  65. Oram, J. F. & Vaughan, A. M. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 99, 1031–1043 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Rader, D. J. & Tall, A. R. The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? Nature Med. 18, 1344–1346 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hennessy, L. K., Kunitake, S. T. & Kane, J. P. Apolipoprotein A-I-containing lipoproteins, with or without apolipoprotein A-II, as progenitors of pre-beta high-density lipoprotein particles. Biochemistry 32, 5759–5765 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Francone, O. L., Royer, L. & Haghpassand, M. Increased preβ-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (apoA-I) transgenes. J. Lipid Res. 37, 1268–1277 (1996).

    CAS  PubMed  Google Scholar 

  70. Hattori, H. et al. Association of coronary heart disease with pre-β-HDL concentrations in Japanese men. Clin. Chem. 50, 589–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Watanabe, H. et al. Decreased high-density lipoprotein (HDL) particle size, preβ-, and large HDL subspecies concentration in Finnish low-HDL families: relationship with intima-media thickness. Arterioscler. Thromb. Vasc. Biol. 26, 897–902 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Guey, L. T. et al. Relation of increased preβ-1 high-density lipoprotein levels to risk of coronary heart disease. Am. J. Cardiol. 108, 360–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Sethi, A. A. et al. High pre-β1 HDL concentrations and low lecithin: cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. Clin. Chem. 56, 1128–1137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miller, N. E. et al. Lipoprotein remodeling generates lipid-poor apolipoprotein A-I particles in human interstitial fluid. Am. J. Physiol. Endocrinol. Metab. 304, E321–E328 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Nanjee, M. N. et al. Composition and ultrastructure of size subclasses of normal human peripheral lymph lipoproteins: quantification of cholesterol uptake by HDL in tissue fluids. J. Lipid Res. 42, 639–648 (2001).

    CAS  PubMed  Google Scholar 

  76. Kujiraoka, T. et al. Effects of intravenous apolipoprotein A-I/phosphatidylcholine discs on LCAT, PLTP, and CETP in plasma and peripheral lymph in humans. Arterioscler. Thromb. Vasc. Biol. 23, 1653–1659 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Feig, J. E., Hewing, B., Smith, J. D., Hazen, S. L. & Fisher, E. A. High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ. Res. 114, 205–213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Diditchenko, S. et al. Novel formulation of a reconstituted high-density lipoprotein (CSL112) dramatically enhances ABCA1-dependent cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 33, 2202–2211 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Kontush, A. & Chapman, M. J. Antiatherogenic small, dense HDL — guardian angel of the arterial wall? Nature Clin. Pract. Cardiovasc. Med. 3, 144–153 (2006).

    Article  CAS  Google Scholar 

  80. Sankaranarayanan, S. et al. Importance of macrophage cholesterol content on the flux of cholesterol mass. J. Lipid Res. 51, 3243–3249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feig, J. E. et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc. Natl Acad. Sci. USA 108, 7166–7171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cimmino, G. et al. Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-I(Milano). J. Cell. Mol. Med. 13, 3226–3235 (2009).

    Article  PubMed  Google Scholar 

  83. Goffinet, M. et al. Anti-atherosclerotic effect of CER-001, an engineered HDL-mimetic, in the high-fat diet-fed LDLr knock-out mouse. Circulation Abstr. 126, A18667 (2012).

    Google Scholar 

  84. Shaw, J. A. et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ. Res. 103, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Camont, L., Chapman, M. J. & Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 17, 594–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Falk, E., Nakano, M., Bentzon, J. F., Finn, A. V. & Virmani, R. Update on acute coronary syndromes: the pathologists' view. Eur. Heart J. 34, 719–728 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Arbab-Zadeh, A., Nakano, M., Virmani, R. & Fuster, V. Acute coronary events. Circulation 125, 1147–1156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Davies, M. J. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94, 2013–2020 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Marso, S. P. et al. Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes. JACC Cardiovasc. Imag. 5, S42–52 (2012).

    Article  Google Scholar 

  90. Kingwell, B. A. & Chapman, M. J. The future of HDL infusion therapies: potential for clinical management of vascular disease. Circulation 128, 1112–1121 (2013). This is a recent comprehensive review of the effects of intravenous infusion of reconstituted HDL particles on atheroscleorsis in animals and humans — the most direct test of the HDL hypothesis.

    Article  PubMed  Google Scholar 

  91. Kontush, A., Lhomme, M. & Chapman, M. J. Unravelling the complexities of the HDL lipidome. J. Lipid Res. 54, 2950–2963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davidson, W. S. et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function. Arterioscler. Thromb. Vasc. Biol. 29, 870–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hattori, K. et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovasc. Imag. 5, 169–177 (2012).

    Article  Google Scholar 

  94. Kini, A. S. et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 62, 21–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Nicholls, S. J. et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 297, 499–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. McKenney, J. M., Proctor, J. D., Harris, S. & Chinchili, V. M. A comparison of the efficacy and toxic effects of sustained- versus immediate-release niacin in hypercholesterolemic patients. JAMA 271, 672–677 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Duggal, J. K. et al. Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery disease. J. Cardiovasc. Pharmacol. Ther. 15, 158–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Bruckert, E., Labreuche, J. & Amarenco, P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis 210, 353–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. HPS2-THRIVE Collaborative Group. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 34, 1279–1291 (2013).

  100. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  PubMed  CAS  Google Scholar 

  101. Lavigne, P. M. & Karas, R. H. The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression. J. Am. Coll. Cardiol. 61, 440–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Kobayashi, K. et al. Prostaglandin D2-DP signaling promotes endothelial barrier function via the cAMP/PKA/Tiam1/Rac1 pathway. Arterioscler. Thromb. Vasc. Biol. 33, 565–571 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Landmesser, U. The difficult search for a 'partner' of statins in lipid-targeted prevention of vascular events: the re-emergence and fall of niacin. Eur. Heart J. 34, 1254–1257 (2013).

    Article  PubMed  Google Scholar 

  104. Barter, P. J. & Rye, K. A. Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler. Thromb. Vasc. Biol. 28, 39–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Veniant, M. M. et al. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J. Clin. Invest. 106, 1501–1510 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manninen, V. et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 85, 37–45 (1992).

    Article  CAS  PubMed  Google Scholar 

  107. Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285, 1585–1591 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Bezafibrate Infarction Prevention (BIP) study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 102, 21–27 (2000).

  109. Ginsberg, H. N. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  PubMed  Google Scholar 

  110. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Tall, A. R. Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255–1274 (1993).

    CAS  PubMed  Google Scholar 

  112. Yamashita, S. et al. Characterization of plasma lipoproteins in patients heterozygous for human plasma cholesteryl ester transfer protein (CETP) deficiency: plasma CETP regulates high-density lipoprotein concentration and composition. Metabolism 40, 756–763 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  114. Hirano, K. et al. Atherosclerotic disease in marked hyperalphalipoproteinemia. Combined reduction of cholesteryl ester transfer protein and hepatic triglyceride lipase. Arterioscler. Thromb. Vasc. Biol. 15, 1849–1856 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Zhong, S. et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917–2923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Marotti, K. R. et al. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364, 73–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Fielding, C. J. & Havel, R. J. Cholesteryl ester transfer protein: friend or foe? J. Clin. Invest. 97, 2687–2688 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clay, M. A., Newnham, H. H., Forte, T. M. & Barter, P. I. Cholesteryl ester transfer protein and hepatic lipase activity promote shedding of apo A-I from HDL and subsequent formation of discoidal HDL. Biochim. Biophys. Acta 1124, 52–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Foger, B. et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem. 274, 36912–36920 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Hayek, T. et al. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J. Clin. Invest. 96, 2071–2074 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Westerterp, M. et al. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice. Arterioscler. Thromb. Vasc. Biol. 26, 2552–2559 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Okamoto, H. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Huang, Z., Inazu, A., Nohara, A., Higashikata, T. & Mabuchi, H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin. Sci. 103, 587–594 (2002).

    Article  CAS  Google Scholar 

  124. Regieli, J. J. et al. CETP genotype predicts increased mortality in statin-treated men with proven cardiovascular disease: an adverse pharmacogenetic interaction. Eur. Heart J. 29, 2792–2799 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Ordovas, J. M. et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler. Thromb. Vasc. Biol. 20, 1323–1329 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007). This is a report of the first Phase III outcome clinical trial to examine the effect of a small molecule (a CETP inhibitor) that has a specific effect on HDL metabolism.

    Article  CAS  PubMed  Google Scholar 

  127. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Ballantyne, C. M. et al. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study. Am. Heart J. 163, 515–521. e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Villard, E. F. et al. Elevated CETP activity improves plasma cholesterol efflux capacity from human macrophages in women. Arterioscler. Thromb. Vasc. Biol. 32, 2341–2349 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Yamashita, S. et al. Very high density lipoproteins induced by plasma cholesteryl ester transfer protein (CETP) have a potent antiatherogenic function. Ann. NY Acad. Sci. 748, 606–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Kathiresan, S. Will cholesteryl ester transfer protein inhibition succeed primarily by lowering low-density lipoprotein cholesterol? Insights from human genetics and clinical trials. J. Am. Coll. Cardiol. 60, 2049–2052 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Borggreve, S. E. et al. The ability of plasma to stimulate fibroblast cholesterol efflux is associated with the −629C→A cholesteryl ester transfer protein promoter polymorphism: role of lecithin: cholesterol acyltransferase activity. Biochim. Biophys. Acta 1781, 10–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Siebel, A. L. et al. Effects of high-density lipoprotein elevation with cholesteryl ester transfer protein inhibition on insulin secretion. Circ. Res. 113, 167–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Atger, V. et al. Cholesterol efflux potential of sera from mice expressing human cholesteryl ester transfer protein and/or human apolipoprotein AI. J. Clin. Invest. 96, 2613–2622 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Matsuura, F., Wang, N., Chen, W., Jiang, X. C. & Tall, A. R. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. J. Clin. Invest. 116, 1435–1442 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ishigami, M. et al. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem. 116, 257–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Tanigawa, H. et al. Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 116, 1267–1273 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Tchoua, U. et al. The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovasc. Res. 77, 732–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Brousseau, M. E. et al. Effects of cholesteryl ester transfer protein inhibition on high-density lipoprotein subspecies, apolipoprotein A-I metabolism, and fecal sterol excretion. Arterioscler. Thromb. Vasc. Biol. 25, 1057–1064 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marschang, P. et al. Plasma cholesteryl ester transfer protein concentrations predict cardiovascular events in patients with coronary artery disease treated with pravastatin. J. Intern. Med. 260, 151–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Vasan, R. S. et al. Association of circulating cholesteryl ester transfer protein activity with incidence of cardiovascular disease in the community. Circulation 120, 2414–2420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khera, A. V., Wolfe, M. L., Cannon, C. P., Qin, J. & Rader, D. J. On-statin cholesteryl ester transfer protein mass and risk of recurrent coronary events (from the pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 [PROVE IT-TIMI 22] study. Am. J. Cardiol. 106, 451–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Duwensee, K. et al. Cholesteryl ester transfer protein in patients with coronary heart disease. Eur. J. Clin. Invest. 40, 616–622 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Ritsch, A. et al. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 121, 366–374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Robins, S. J., Lyass, A., Brocia, R. W., Massaro, J. M. & Vasan, R. S. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study. Atherosclerosis 228, 230–236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boekholdt, S. M. et al. Plasma levels of cholesteryl ester transfer protein and the risk of future coronary artery disease in apparently healthy men and women: the prospective EPIC (European Prospective Investigation into Cancer and nutrition)-Norfolk population study. Circulation 110, 1418–1423 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Borggreve, S. E. et al. High plasma cholesteryl ester transfer protein levels may favour reduced incidence of cardiovascular events in men with low triglycerides. Eur. Heart J. 28, 1012–1018 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Kappelle, P. J., Perton, F., Hillege, H. L., Dallinga-Thie, G. M. & Dullaart, R. P. High plasma cholesteryl ester transfer but not CETP mass predicts incident cardiovascular disease: a nested case-control study. Atherosclerosis 217, 249–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Schierer, A. et al. Genetic variation in cholesterol ester transfer protein, serum CETP activity, and coronary artery disease risk in Asian Indian diabetic cohort. Pharmacogenet. Genom. 22, 95–104 (2012).

    Article  CAS  Google Scholar 

  150. Liang, H. Q., Rye, K. A. & Barter, P. J. Dissociation of lipid-free apolipoprotein A-I from high density lipoproteins. J. Lipid Res. 35, 1187–1199 (1994).

    CAS  PubMed  Google Scholar 

  151. Cazita, P. M., Barbeiro, D. F., Moretti, A. I., Quintao, E. C. & Soriano, F. G. Human cholesteryl ester transfer protein expression enhances the mouse survival rate in an experimental systemic inflammation model: a novel role for CETP. Shock 30, 590–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Bishop, B. M. Systematic review of CETP inhibitors for increasing high-density lipoprotein cholesterol: where do these agents stand in the approval process? Am. J. Ther. (in the press).

  153. Bloomfield, D. et al. Efficacy and safety of the cholesteryl ester transfer protein inhibitor anacetrapib as monotherapy and coadministered with atorvastatin in dyslipidemic patients. Am. Heart J. 157, 352–360. e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Krauss, R. M. et al. Changes in lipoprotein subfraction concentration and composition in healthy individuals treated with the CETP inhibitor anacetrapib. J. Lipid Res. 53, 540–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nicholls, S. J. et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA 306, 2099–2109 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Yvan-Charvet, L. et al. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler. Thromb. Vasc. Biol. 30, 1430–1438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heinecke, J. W. The not-so-simple HDL story: a new era for quantifying HDL and cardiovascular risk? Nature Med. 18, 1346–1347 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Larach, D. B., deGoma, E. M. & Rader, D. J. Targeting high density lipoproteins in the prevention of cardiovascular disease? Curr. Cardiol. Rep. 14, 684–691 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vucic, E. & Rosenson, R. S. Recombinant high-density lipoprotein formulations. Curr. Atheroscler. Rep. 13, 81–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Nanjee, M. N., Doran, J. E., Lerch, P. G. & Miller, N. E. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler. Thromb. Vasc. Biol. 19, 979–989 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Gille, A., Easton, R., Wright, S. & Shear, C. CSL112, a novel formulation of human apolipoprotein A-I, dramatically increases cholesterol efflux capacity in healthy subjects: a placebo-controlled, double-blinded, randomized single ascending dose study. Circulation Abstr. 126, A11855 (2012).

    Google Scholar 

  163. Keyserling, C. H. et al. CER-001, a synthetic HDL-mimetic, safely mobilizes cholesterol in healthy dyslipidemic volunteers. Circulation Abstr. 124, A15525 (2011).

    Google Scholar 

  164. Nanjee, M. N. et al. Intravenous apoA-I/lecithin discs increase pre-β-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J. Lipid Res. 42, 1586–1593 (2001).

    CAS  PubMed  Google Scholar 

  165. Kee, P., Rye, K. A., Taylor, J. L., Barrett, P. H. & Barter, P. J. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits. Arterioscler. Thromb. Vasc. Biol. 22, 1912–1917 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Easton, R., Tremper, L. & Shear, C. Safety and pharmakokinetics of a novel formulation of human apolipoprotein A-I (CSL112) in healthy subjects: results of a placebo-controlled, randomized multiple ascending dose study. Circulation 126, A11892 (2012).

    Google Scholar 

  167. Nicholls, S. J. et al. Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J. Am. Coll. Cardiol. 47, 992–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003). This is the first clinical trial to directly test the HDL hypothesis by intravenous infusion of reconstituted discoidal HDL-like particles. A recombinant mutant APOA1 was used that is more active than normal APOA1 and had been found to induce lesion regression in animals.

    Article  CAS  PubMed  Google Scholar 

  169. Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007). This is the first clinical trial to directly test the HDL hypothesis by intravenous infusion of reconstituted discoidal HDL-like particles composed of lecithin and APOA1 isolated from human plasma, which had already been shown to induce lesion regression in animals.

    Article  PubMed  Google Scholar 

  170. Waksman, R. et al. A first-in-man, randomized, placebo-controlled study to evaluate the safety and feasibility of autologous delipidated high-density lipoprotein plasma infusions in patients with acute coronary syndrome. J. Am. Coll. Cardiol. 55, 2727–2735 (2010).

    Article  PubMed  Google Scholar 

  171. Drew, B. G. et al. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus. J. Lipid Res. 52, 572–581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hoang, A. et al. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur. Heart J. 33, 657–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Tricoci, P. et al. Safety and tolerability of CSL112 in subjects with stable atherothrombotic disease: esults from a phase 2a multicenter, randomized, double-blind, placebo-controlled, ascending dose study. Circulation Abstr. A18589 (2013).

  174. Gille, A. et al. A novel formualtion of human apolipoprotein A-I dramatically increases cholesterol efflux capacity in patients with stable atherothrombotic disease: a multicenter, randomized, double-blind, placebo-controlled, ascending-dose study. Circulation Abstr. A15780 (2013).

  175. Kunnen, S. & Van Eck, M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J. Lipid Res. 53, 1783–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rousset, X. et al. Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice. J. Pharmacol. Exp. Ther. 335, 140–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mertens, A. et al. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation 107, 1640–1646 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Furbee, J. W. Jr., Sawyer, J. K. & Parks, J. S. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J. Biol. Chem. 277, 3511–3519 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Berard, A. M. et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nature Med. 3, 744–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  180. Furbee, J. W. Jr & Parks, J. S. Transgenic overexpression of human lecithin: cholesterol acyltransferase (LCAT) in mice does not increase aortic cholesterol deposition. Atherosclerosis 165, 89–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Mehlum, A., Muri, M., Hagve, T. A., Solberg, L. A. & Prydz, H. Mice overexpressing human lecithin: cholesterol acyltransferase are not protected against diet-induced atherosclerosis. APMIS 105, 861–868 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Holleboom, A. G. et al. Plasma levels of lecithin:cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case-control analysis nested in the EPIC-Norfolk population study. J. Lipid Res. 51, 416–421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bailey, D. et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol. 55, 2580–2589 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Nicholls, S. J. et al. Efficacy and safety of a novel oral inducer of apolipoprotein A-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J. Am. Coll. Cardiol. 57, 1111–1119 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Nicholls, S. J. et al. ApoA-I induction as a potential cardioprotective strategy: rationale for the SUSTAIN and ASSURE studies. Cardiovasc. Drugs Ther. 26, 181–187 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Nicholls, S. J. et al. ASSURE: effect of an oral agent indusing apoA-I synthesis on progression of coronary atheroslerosis: results of the ASSURE study. [online] (2013).

  187. Navab, M. et al. Apolipoprotein A-I mimetic peptides. Arterioscler. Thromb. Vasc. Biol. 25, 1325–1331 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Carballo-Jane, E. et al. ApoA-I mimetic peptides promote pre-β HDL formation in vivo causing remodeling of HDL and triglyceride accumulation at higher dose. Bioorg. Med. Chem. 18, 8669–8678 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Chen, X. et al. An apoA-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration. Int. J. Biol. Sci. 5, 489–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Song, X., Fischer, P., Chen, X., Burton, C. & Wang, J. An apoA-I mimetic peptide facilitates off-loading cholesterol from HDL to liver cells through scavenger receptor BI. Int. J. Biol. Sci. 5, 637–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Navab, M., Anantharamaiah, G. M. & Fogelman, A. M. The effect of apolipoprotein mimetic peptides in inflammatory disorders other than atherosclerosis. Trends Cardiovasc. Med. 18, 61–66 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Remaley, A. T., Amar, M. & Sviridov, D. HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications. Expert Rev. Cardiovasc. Ther. 6, 1203–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Verschuren, L., de Vries-van der Weij, J., Zadelaar, S., Kleemann, R. & Kooistra, T. LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms. J. Lipid Res. 50, 301–311 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Beltowski, J. Liver X receptors (LXR) as therapeutic targets in dyslipidemia. Cardiovasc. Ther. 26, 297–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Ogata, M. et al. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 205, 413–419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hafiane, A. & Genest, J. HDL atherosclerosis, and emerging therapies. Cholesterol 2013, 891403 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Mencarelli, A. & Fiorucci, S. FXR an emerging therapeutic target for the treatment of atherosclerosis. J. Cell. Mol. Med. 14, 79–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J. Pharmacol. Exp. Ther. 343, 556–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Goodman, K. B. et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett. 19, 27–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. O'Connell, D. P. et al. Design and synthesis of boronic acid inhibitors of endothelial lipase. Bioorg. Med. Chem. Lett. 22, 1397–1401 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Rayner, K. J. & Moore, K. J. MicroRNA control of high-density lipoprotein metabolism and function. Circ. Res. 114, 183–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011). This study shows that increasing ABCA1 expression by administering anti-miR33 increases HDL-C concentration and reduces plaque size in LDLR-deficient mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Horie, T. et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE−/− mice. J. Am. Heart Assoc. 1, e003376 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Bell, T. A. et al. Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr−/− mice. J. Lipid Res. 54, 2647–2657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Graham, M. J. et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ. Res. 112, 1479–1490 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Fu, Y. et al. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis. Cell. Metab. 18, 225–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Rayner, K. J. et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478, 404–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biol. 13, 423–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Chapman, M. J., Assmann, G., Fruchart, J. C., Shepherd, J. & Sirtori, C. Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid — a position paper developed by the European Consensus Panel on HDL-C. Curr. Med. Res. Opin. 20, 1253–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

  211. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) —final report. Circulation 106, 3143–3421 (2002).

  212. Contois, J. et al. Reference intervals for plasma apolipoprotein A-1 determined with a standardized commercial immunoturbidimetric assay: results from the Framingham Offspring Study. Clin. Chem. 42, 507–514 (1996).

    CAS  PubMed  Google Scholar 

  213. Silva, R. A. et al. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc. Natl Acad. Sci. USA 105, 12176–12181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Rosenson, R. S. et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 57, 392–410 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Martinez, L. O. et al. Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  216. Fielding, C. J. & Fielding, P. E. Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36, 211–228 (1995).

    CAS  PubMed  Google Scholar 

  217. Lewis, G. F. & Rader, D. J. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ. Res. 96, 1221–1232 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Smith, J. D. Insight into ABCG1-mediated cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 26, 1198–1200 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Rye, K. A., Bursill, C. A., Lambert, G., Tabet, F. & Barter, P. J. The metabolism and anti-atherogenic properties of HDL. J. Lipid Res. 50, S195–S200 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Lamon-Fava, S. et al. Extended-release niacin alters the metabolism of plasma apolipoprotein (Apo) A-I and ApoB-containing lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28, 1672–1678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chapman, M. J. et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 32, 1345–1361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wagner, J. et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 1392–1400 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Chen, W. J. et al. MicroRNA-33 in atherosclerosis etiology and pathophysiology. Atherosclerosis 227, 201–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. Barter, P. J., Brandrup-Wognsen, G., Palmer, M. K. & Nicholls, S. J. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J. Lipid Res. 51, 1546–1553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.A.K. holds a National Health and Medical Research Council of Australia Senior Principal Research Fellowship. M.J.C. is Emeritus Director at INSERM. A.K. is a Research Director at INSERM. The authors are indebted to W. James (william.james@bakeridi.edu.au) for assistance with the original artwork for the figures in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwyn A. Kingwell.

Ethics declarations

Competing interests

B.A.K. has received product funding (but no research funding) from CSL and patient plasma (but no research funding) from Hoffman La Roche, both for investigator-initiated clinical trials. She has also partnered with Resverlogix to jointly fund an investigator-initiated trial. M.J.C. and A.K. have received research grant funding from CSL. N.E.M. has no disclosures.

Related links

PowerPoint slides

Glossary

APOA1

Apolipoprotein A1; the major apolipoprotein in human high-density lipoprotein (HDL).

LCAT

Lecithin–cholesterol acyltransferase; an enzyme that esterifies free cholesterol to cholesteryl ester and hydrolyses phosphatidylcholine. LCAT is bound to both high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in plasma, and is activated by apolipoprotein A1.

ABCA1

ATP-binding cassette subfamily A member 1; a cell membrane transporter that exports cholesterol and phospholipid to lipid-poor high-density lipoprotein (HDL) particles in humans, including nascent pre-β HDL particles and, to a lesser degree, HDL3.

CETP

Cholesteryl ester transfer protein; a protein that transfers triglycerides from very-low-density lipoproteins (VLDLs) or low-density lipoproteins (LDLs) and exchanges them for cholesteryl esters from high-density lipoproteins (HDLs).

Hepatic lipase

An enzyme that primarily hydrolyses triglycerides, remodelling high-density lipoprotein (HDL) into smaller particles and dissociating apolipoprotein A1.

SRB1

Scavenger receptor class B member 1; these receptors were identified as oxidized low-density lipoprotein (LDL) receptors but are equally involved in cholesterol transport to and from high-density lipoprotein (HDL) particles.

Endothelial lipase

(LIPG). An enzyme that functions primarily as a phospholipase and remodels high-density lipoprotein (HDL) into smaller particles without mediating the dissociation of apolipoprotein A1.

PLTP

Phospholipid transfer protein; a lipid transfer protein that transfers phospholipids from triglyceride-rich lipoproteins (low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL)) to high-density lipoprotein (HDL), and also between different HDL subpopulations.

Pre-β HDL

A heterogeneous population of dense, lipid-poor or nascent high-density lipoprotein (HDL) particles, frequently discoidal, with diameters of 5.5–7.5 nm.

HDL3

A major subfraction of native high-density lipoprotein (HDL) predominantly containing lipid-poor, spherical HDL particles that are smaller in diameter (between 7.2nm and 8.8nm) than HDL2.

APOA1 Milano

A naturally occurring apolipoprotein A1 (APOA1) protein that is associated with a low frequency of cardiovascular disease.

LPL

Lipoprotein lipase; an enzyme that primarily hydrolyses triglycerides in triglyceride-rich lipoproteins (for example, chylomicrons and very-low- density lipoprotein (VLDL)).

APOA2

Apolipoprotein A2; the second most abundant apolipoprotein in human high-density lipoprotein (HDL).

HDL2

A major subfraction of native high-density lipoprotein (HDL)-containing lipid-rich, spherical HDL particles of a large diameter (between 8.8 nm and 12.9 nm).

ABCG1

ATP-binding cassette subfamily G member 1; a cell membrane transporter that may promote cholesterol efflux to mature cholesteryl ester-rich spherical high-density lipoprotein (HDL) particles in humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingwell, B., Chapman, M., Kontush, A. et al. HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 13, 445–464 (2014). https://doi.org/10.1038/nrd4279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4279

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research