Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coming full circle in diabetes mellitus: from complications to initiation

Abstract

Glycaemic control, reduction of blood pressure using agents that block the renin–angiotensin system and control of dyslipidaemia are the major strategies used in the clinical management of patients with diabetes mellitus. Each of these approaches interrupts a number of pathological pathways, which directly contributes to the vascular complications of diabetes mellitus, including renal disease, blindness, neuropathy and cardiovascular disease. However, research published over the past few years has indicated that many of the pathological pathways important in the development of the vascular complications of diabetes mellitus are equally relevant to the initiation of diabetes mellitus itself. These pathways include insulin signalling, generation of cellular energy, post-translational modifications and redox imbalances. This Review will examine how the development of diabetes mellitus has come full circle from initiation to complications and suggests that the development of diabetes mellitus and the progression to chronic complications both require the same mechanistic triggers.

Key Points

  • The development of diabetes mellitus and its associated vascular complications share common pathogenic pathways

  • Vascular damage is often the result of imbalances in glucose handling at many sites within the cardiovascular system

  • Dyslipidaemia and abnormalities in cellular energetics are frequently seen in both the development of diabetes mellitus and its associated vascular complications

  • Research programs should now investigate patterns of damage across the body in patients with diabetes mellitus

  • Grouping and characterization of patterns in the initiation of diabetes mellitus to enable comparison with patterns in vascular complications of diabetes mellitus might result in superior therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathway leading to the dysfunction of cellular energy generation that results in diabetic complications.

Similar content being viewed by others

References

  1. Baekkeskov, S. et al. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 298, 167–169 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Beyan, H., Wen, L. & Leslie, R. D. Guts, germs, and meals: the origin of type 1 diabetes. Curr. Diab. Rep. 12, 456–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Beyan, H. et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes 61, 1192–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawasaki, E., Abiru, N. & Eguchi, K. Prevention of type 1 diabetes: from the view point of beta cell damage. Diabetes Res. Clin. Pract. 66 (Suppl. 1), S27–S32 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Jansen, A. et al. Immunohistochemical characterization of monocytes–macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes 43, 667–675 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Singal, D. P. & Blajchman, M. A. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 22, 429–432 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Gohda, T. et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 23, 516–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niewczas, M. A. et al. Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. J. Am. Soc. Nephrol. 23, 507–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dabelea, D. et al. Incidence of diabetes in youth in the United States. JAMA 297, 2716–2724 (2007).

    Article  PubMed  Google Scholar 

  10. Lipton, R. B. Incidence of diabetes in children and youth—tracking a moving target. JAMA 297, 2760–2762 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Kitagawa, T., Owada, M., Urakami, T. & Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin. Pediatr. (Phila.) 37, 111–115 (1998).

    Article  CAS  Google Scholar 

  12. Narayan, K. M., Boyle, J. P., Thompson, T. J., Sorensen, S. W. & Williamson, D. F. Lifetime risk for diabetes mellitus in the United States. JAMA 290, 1884–1890 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. [No authors listed] Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care 23, 381–389 (2000).

  14. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article  PubMed  Google Scholar 

  15. Kahn, S. E. et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663–1672 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Weng, J. et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 371, 1753–1760 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Koro, C. E., Bowlin, S. J., Bourgeois, N. & Fedder, D. O. Glycemic control from 1988 to 2000 among U. S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care 27, 17–20 (2004).

    Article  PubMed  Google Scholar 

  18. Mogensen, C. E., Christensen, C. K. & Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32 (Suppl. 2), 64–78 (1983).

    Article  PubMed  Google Scholar 

  19. [No authors listed] Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

  20. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Salomaa, V., Riley, W., Kark, J. D., Nardo, C. & Folsom, A. R. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 91, 1432–1443 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hirsch, I. B. & Brownlee, M. Should minimal blood glucose variability become the gold standard of glycemic control? J. Diabetes Complications 19, 178–181 (2005).

    Article  PubMed  Google Scholar 

  23. Guarner, F. et al. Mechanisms of disease: the hygiene hypothesis revisited. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 275–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, S. I. et al. Mutations in insulin-receptor gene in insulin-resistant patients. Diabetes Care 13, 257–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Patel, A. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Leney, S. E. & Tavare, J. M. The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J. Endocrinol. 203, 1–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Holt, R. I. G., Cockram, C., Flyvbjerg, A. & Goldstein, B. J. (Eds) Textbook of Diabetes 4th Edition (Blackwell, UK, 2010).

    Chapter  Google Scholar 

  28. Lund University. Why do some diabetics escape complications? [online],(2011).

  29. Joslin Diabetes Centre. Joslin 50-Year Medalist Study [online], (2012).

  30. Herrmann, C. et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56, 117–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Legakis, I. N., Tzioras, C. & Phenekos, C. Decreased glucagon-like peptide 1 fasting levels in type 2 diabetes. Diabetes Care 26, 252 (2003).

    Article  PubMed  Google Scholar 

  32. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Farilla, L. et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144, 5149–5158 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kwon, G., Marshall, C. A., Pappan, K. L., Remedi, M. S. & McDaniel, M. L. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 53 (Suppl. 3), S225–S232 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Preitner, F. et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 113, 635–645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bunck, M. C. et al. Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34, 2041–2047 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Park, C. W. et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kodera, R. et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 54, 965–978 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Q. et al. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc. Diabetol. 9, 32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arakawa, M. et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagashima, M. et al. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 54, 2649–2659 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaspari, T. et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE−/− mouse model. Diab. Vasc. Dis. Res. 8, 117–124 (2011).

    Article  PubMed  Google Scholar 

  46. Lonborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Read, P. A., Khan, F. Z. & Dutka, D. P. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 98, 408–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Carraro-Lacroix, L. R., Malnic, G. & Girardi, A. C. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 297, F1647–F1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Hirata, K. et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem. Biophys. Res. Commun. 380, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. [No authors listed] Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317, 703–713 (1998).

  53. [No authors listed] Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352, 854–865 (1998).

  54. Ahren, B. et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 25, 869–875 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, W. J. et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J. Pharmacol. Exp. Ther. 340, 248–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Shah, Z. et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124, 2338–2349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsubara, J. et al. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol. 59, 265–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sauve, M. et al. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59, 1063–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bethel, M. A., Califf, R. M. & Holman, R. R. Rationale and design of the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Presented at the 69th Scientific Sessions of the American Diabetes Association (New Orleans, LA, 2009).

  60. US National Library of Medicine. Clinicaltrials.gov [online], (2012).

  61. US National Library of Medicine. Clinicaltrials.gov [online], (2012).

  62. Butler, P. C., Dry, S. & Elashoff, R. GLP-1-based therapy for diabetes: what you do not know can hurt you. Diabetes Care 33, 453–455 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dankner, R., Chetrit, A., Shanik, M. H., Raz, I. & Roth, J. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up: a preliminary report. Diabetes Care 32, 1464–1466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Yamada, N. et al. Increased risk factors for coronary artery disease in Japanese subjects with hyperinsulinemia or glucose intolerance. Diabetes Care 17, 107–114 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Sasaoka, T. et al. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J. Biol. Chem. 269, 13689–13694 (1994).

    CAS  PubMed  Google Scholar 

  67. Steinberg, H. O., Brechtel, G., Johnson, A., Fineberg, N. & Baron, A. D. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J. Clin. Invest. 94, 1172–1179 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vincent, M. A., Montagnani, M. & Quon, M. J. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Current Diab. Rep. 3, 279–288 (2003).

    Article  Google Scholar 

  69. Kitamura, T., Kahn, C. R. & Accili, D. Insulin receptor knockout mice. Annu. Rev. Physiol. 65, 313–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Kulkarni, R. N. et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Higaki, Y. et al. Insulin receptor substrate-2 is not necessary for insulin- and exercise-stimulated glucose transport in skeletal muscle. J. Biol. Chem. 274, 20791–20795 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell. Metab. 12, 329–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gual, P., Le Marchand-Brustel, Y. & Tanti, J. F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87, 99–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez, V. et al. Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J. Biol. Chem. 286, 4216–4225 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bridgewater, D. J., Ho, J., Sauro, V. & Matsell, D. G. Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway. Kidney Int. 67, 1308–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Winder, W. W. & Hardie, D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).

    CAS  PubMed  Google Scholar 

  78. Hallows, K. R., Mount, P. F., Pastor-Soler, N. M. & Power, D. A. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease. Am. J. Physiol. Renal Physiol. 298, F1067–F1077 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eid, A. A. et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 285, 37503–37512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell. Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cacicedo, J. M. et al. Activation of AMP-activated protein kinase prevents lipotoxicity in retinal pericytes. Invest. Ophthalmol. Vis. Sci. 52, 3630–3639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Villarroel, M., Garcia-Ramirez, M., Corraliza, L., Hernandez, C. & Simo, R. Fenofibric acid prevents retinal pigment epithelium disruption induced by interleukin-1beta by suppressing AMP-activated protein kinase (AMPK) activation. Diabetologia 54, 1543–1553 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Paiva, M. A. et al. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 300, H2123–H2134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xie, J. & Herbert, T. P. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic beta-cell mass: implications in the development of type-2 diabetes. Cell. Mol. Life Sci. 69, 1289–1304 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Christ-Roberts, C. Y. et al. Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action. J. Appl. Physiol. 95, 2519–2529 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Manson, J. E. et al. A prospective study of exercise and incidence of diabetes among US male physicians. JAMA 268, 63–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Otterman, N. M. et al. An exercise programme for patients with diabetic complications: a study on feasibility and preliminary effectiveness. Diabet. Med. 28, 212–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Fantus, I. G. & Brosseau, R. Mechanism of action of metformin: insulin receptor and postreceptor effects in vitro and in vivo. J. Clin. Endocrinol. Metab. 63, 898–905 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Rutter, G. A., Da Silva Xavier, G. & Leclerc, I. Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem. J. 375, 1–16 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saccomani, M. P., Bonadonna, R. C., Bier, D. M., DeFronzo, R. A. & Cobelli, C. A model to measure insulin effects on glucose transport and phosphorylation in muscle: a three-tracer study. Am. J. Physiol. 270, E170–E185 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Joost, H. G. & Thorens, B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol. Membr. Biol. 18, 247–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Friedman, J. E. et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J. Clin. Invest. 89, 701–705 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karlsson, H. K. et al. Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58, 847–854 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. James, D. E., Strube, M. & Mueckler, M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338, 83–87 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. James, D. E., Brown, R., Navarro, J. & Pilch, P. F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333, 183–185 (1988).

    Article  CAS  PubMed  Google Scholar 

  101. O'Gorman, D. J. et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia 49, 2983–2992 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lauritzen, H. P., Galbo, H., Toyoda, T. & Goodyear, L. J. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes 59, 2134–2144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stenbit, A. E. et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat. Med. 3, 1096–1101 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Katz, E. B., Stenbit, A. E., Hatton, K., DePinho, R. & Charron, M. J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377, 151–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Kennedy, J. W. et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48, 1192–1197 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Fang, Z. Y., Prins, J. B. & Marwick, T. H. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25, 543–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Thorens, B., Sarkar, H. K., Kaback, H. R. & Lodish, H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55, 281–290 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Orci, L., Thorens, B., Ravazzola, M. & Lodish, H. F. Localization of the pancreatic beta cell glucose transporter to specific plasma membrane domains. Science 245, 295–297 (1989).

    Article  CAS  PubMed  Google Scholar 

  109. Thorens, B., Wu, Y. J., Leahy, J. L. & Weir, G. C. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J. Clin. Invest. 90, 77–85 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson, J. H. et al. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Science 250, 546–549 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Orci, L. et al. Evidence that down-regulation of beta-cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia. Proc. Natl Acad. Sci. USA 87, 9953–9957 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cani, P. D. et al. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Mol. Cell Endocrinol. 276, 18–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Stolarczyk, E. et al. Loss of sugar detection by GLUT2 affects glucose homeostasis in mice. PLoS ONE 2, e1288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laukkanen, O. et al. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 54, 2256–2260 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Kamran, M., Peterson, R. G. & Dominguez, J. H. Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J. Am. Soc. Nephrol. 8, 943–948 (1997).

    CAS  PubMed  Google Scholar 

  116. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Ruderman, N. B., Williamson, J. R. & Brownlee, M. Glucose and diabetic vascular disease. FASEB J. 6, 2905–2914 (1992).

    Article  CAS  PubMed  Google Scholar 

  118. Pardridge, W. M., Boado, R. J. & Farrell, C. R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265, 18035–18040 (1990).

    CAS  PubMed  Google Scholar 

  119. Badr, G. A., Tang, J., Ismail-Beigi, F. & Kern, T. S. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes 49, 1016–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, D., Pascual, J. M. & De Vivo, D. Glucose transporter type 1 deficiency syndrome. In GeneReviews (Eds Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K.) [online], (Seattle, Washington, 1993).

    Google Scholar 

  121. Keenan, H. A. et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59, 2846–2853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun, J. K. et al. Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration: the Joslin 50-year Medalist study. Diabetes Care 34, 968–974 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Miyata, T. et al. Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int. 53, 416–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P. & Cerami, A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232, 1629–1632 (1986).

    Article  CAS  PubMed  Google Scholar 

  126. Monnier, V., Kohn, R. & Cerami, A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc. Natl Acad. Sci. USA 81, 583–587 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Coughlan, M. T. et al. Advanced glycation end products are direct modulators of beta-cell function. Diabetes 60, 2523–2532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng, F. et al. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab. Res. Rev. 18, 224–237 (2002).

    Article  PubMed  Google Scholar 

  129. Tan, A. L. et al. Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. Am. J. Physiol. Renal Physiol. 298, F763–F770 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Harcourt, B. E. et al. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int. 80, 190–198 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, Y. et al. Blockade of late stages of autoimmune diabetes by inhibition of the receptor for advanced glycation end products. J. Immunol. 173, 1399–1405 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Cassese, A. et al. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J. Biol. Chem. 283, 36088–36099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brenner, B. M. & Levine, S. A. (Eds) Brenner and Rector's The Kidney (Elsevier, Philadelphia, 2008).

    Google Scholar 

  134. Dominguez, J. H., Song, B., Maianu, L., Garvey, W. T. & Qulali, M. Gene expression of epithelial glucose transporters: the role of diabetes mellitus. J. Am. Soc. Nephrol. 5, S29–S36 (1994).

    CAS  PubMed  Google Scholar 

  135. Noonan, W. T., Shapiro, V. M. & Banks, R. O. Renal glucose reabsorption during hypertonic glucose infusion in female streptozotocin-induced diabetic rats. Life Sci. 68, 2967–2977 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Ly, J. P. et al. The Sweet Pee model for Sglt2 mutation. J. Am. Soc. Nephrol. 22, 113–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vallon, V. et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D. & Alexander, R. W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74, 1141–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Rhee, S. G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  PubMed  Google Scholar 

  140. Veal, E. A., Day, A. M. & Morgan, B. A. Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Thallas-Bonke, V. et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Touyz, R. M. et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ. Res. 90, 1205–1213 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, H., Li, X. & Epstein, P. N. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes 54, 1437–1446 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S. & Thompson, J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl Acad. Sci. USA 93, 11853–11858 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cases, A. & Coll, E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. Suppl. 99, S87–S93 (2005).

    Article  CAS  Google Scholar 

  146. Mooradian, A. D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 5, 150–159 (2009).

    CAS  PubMed  Google Scholar 

  147. Oresic, M. et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J. Exp. Med. 205, 2975–2984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boslem, E., Meikle, P. J. & Biden, T. J. Roles of ceramide and sphingolipids in pancreatic beta-cell function and dysfunction. Islets 4, 177–187 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sorrentino, S. & Landmesser, U. Nonlipid-lowering effects of statins. Curr. Treat. Options Cardiovasc. Med. 7, 459–466 (2005).

    Article  PubMed  Google Scholar 

  150. Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Arnaud, C., Veillard, N. R. & Mach, F. Cholesterol-independent effects of statins in inflammation, immunomodulation and atherosclerosis. Curr. Drug Targets Cardiovasc. Haematol. Disord. 5, 127–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Unger, R. H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Culver, A. L. et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women's Health Initiative. Arch. Intern. Med. 172, 144–152 (2012).

    Article  PubMed  Google Scholar 

  154. Rajpathak, S. N. et al. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care 32, 1924–1929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Hyun, E., Ramachandran, R., Hollenberg, M. D. & Vergnolle, N. Mechanisms behind the anti-inflammatory actions of insulin. Crit. Rev. Immunol. 31, 307–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Musso, G., Gambino, R. & Cassader, M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 33, 2277–2284 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Blackshear, J. L., Davidman, M. & Stillman, M. T. Identification of risk for renal insufficiency from nonsteroidal anti-inflammatory drugs. Arch. Intern. Med. 143, 1130–1134 (1983).

    Article  CAS  PubMed  Google Scholar 

  160. Cheng, H. F. & Harris, R. C. Renal effects of non-steroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr. Pharm. Des 11, 1795–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Nasrallah, R., Robertson, S. J. & Hebert, R. L. Chronic COX inhibition reduces diabetes-induced hyperfiltration, proteinuria, and renal pathological markers in 36-week B6-Ins2(Akita) mice. Am. J. Nephrol. 30, 346–353 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Quilley, J., Santos, M. & Pedraza, P. Renal protective effect of chronic inhibition of COX-2 with SC-58236 in streptozotocin-diabetic rats. Am. J. Physiol. Heart Circ. Physiol. 300, H2316–H2322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maroon, J. C. & Bost, J. W. Omega-3 fatty acids (fish oil) as an anti-inflammatory: an alternative to nonsteroidal anti-inflammatory drugs for discogenic pain. Surg. Neurol. 65, 326–331 (2006).

    Article  PubMed  Google Scholar 

  164. Shimomura, I., Hammer, R. E., Ikemoto, S., Brown, M. S. & Goldstein, J. L. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 401, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Joffe, B. I., Panz, V. R. & Raal, F. J. From lipodystrophy syndromes to diabetes mellitus. Lancet 357, 1379–1381 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Sigal, R. J., Kenny, G. P., Wasserman, D. H., Castaneda-Sceppa, C. & White, R. D. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 29, 1433–1438 (2006).

    Article  PubMed  Google Scholar 

  167. Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Ward, K. M., Mahan, J. D. & Sherman, W. M. Aerobic training and diabetic nephropathy in the obese Zucker rat. Ann. Clin. Lab. Sci. 24, 266–277 (1994).

    CAS  PubMed  Google Scholar 

  169. Albright, A. L. et al. Diabetic nephropathy in an aerobically trained rat model of diabetes. Med. Sci. Sports Exerc. 27, 1270–1277 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Maffei, M. et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1, 1155–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Satoh, N. et al. Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249, 107–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Chua, S. C. Jr et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Schmidt, I. et al. The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int. J. Obes. Relat. Metab. Disord. 25, 1168–1174 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Goncalves, A. C. et al. Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension 53, 387–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Suganami, E. et al. Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells. Diabetes 53, 2443–2448 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Wolf, G. & Ziyadeh, F. N. Leptin and renal fibrosis. Contrib. Nephrol. 151, 175–183 (2006).

    Article  PubMed  Google Scholar 

  179. Miller, R. A. et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. J. Clin. Invest. 121, 2518–2528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sharma, K. et al. Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645–1656 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kern, P. A., Ranganathan, S., Li, C., Wood, L. & Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–E751 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Mohamed-Ali, V., Pinkney, J. H. & Coppack, S. W. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes Relat Metab. Disord. 22, 1145–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  183. Jung, H. S. et al. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc. Res. 69, 76–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Kopp, E. & Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956–959 (1994).

    Article  CAS  PubMed  Google Scholar 

  185. Shoelson, S. E., Lee, J. & Yuan, M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27 (Suppl. 3), S49–S52 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Manning, A. M. & Davis, R. J. Targeting JNK for therapeutic benefit: from junk to gold? Nat. Rev. Drug Discov. 2, 554–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  187. Ijaz, A. et al. Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int. 75, 381–388 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Lee, W. J. et al. C-peptide predicts the remission of type 2 diabetes after bariatric surgery. Obes. Surg. 22, 293–298 (2012).

    Article  PubMed  Google Scholar 

  190. Currie, A., Chetwood, A. & Ahmed, A. R. Bariatric surgery and renal function. Obes. Surg. 21, 528–539 (2011).

    Article  PubMed  Google Scholar 

  191. Ashrafian, H., le Roux, C. W., Darzi, A. & Athanasiou, T. Effects of bariatric surgery on cardiovascular function. Circulation 118, 2091–2102 (2008).

    Article  PubMed  Google Scholar 

  192. Todd, J. A. A protective role of the environment in the development of type 1 diabetes? Diabet. Med. 8, 906–910 (1991).

    Article  CAS  PubMed  Google Scholar 

  193. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Nymark, M. et al. Serum lipopolysaccharide activity is associated with the progression of kidney disease in Finnish patients with type 1 diabetes. Diabetes Care 32, 1689–1693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lu, Y. C., Yin, L. T., Chang, W. T. & Huang, J. S. Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J. Biosci. Bioeng. 110, 709–715 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. E. Harcourt and J. M. Forbes contributed to researching data for the article, discussion of content, writing the article and reviewing/editing the article before submission. S. A. Penfold contributed to researching data for the article and writing the article.

Corresponding author

Correspondence to Josephine M. Forbes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harcourt, B., Penfold, S. & Forbes, J. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol 9, 113–123 (2013). https://doi.org/10.1038/nrendo.2012.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing