Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Relatedness in the post-genomic era: is it still useful?

Key Points

  • Relatedness is a fundamental concept in everyday life and in quantitative genetics. It has a central role in efforts to understand genetic mechanisms and in predicting phenotypes, as well as in population, evolutionary and forensic genetics.

  • Traditionally, the relatedness of two individuals was measured in terms of the fraction of genome they share IBD (identity-by-descent), which is defined as inheritance from a recent common ancestor, but there are many approaches to interpreting 'recent'.

  • A better viewpoint is given by coalescent theory: the time since the most recent common ancestor for two individuals varies along the genome and can take an essentially continuous range of possible values.

  • There are now many different ways to measure the genetic similarity between pairs of individuals using genome-wide single-nucleotide polymorphism (SNP) data. The binary IBD versus non-IBD distinction provides a simple approximation but gives an inadequate representation of reality compared with the precision offered by the extensive data sets available nowadays.

  • We argue that, for many applications, traditional concepts of relatedness are no longer required; instead, models and analyses can be based directly on genome similarity.

  • There is no one best measure of genome similarity, but different measures can be evaluated on their performance in specific applications.

Abstract

Relatedness is a fundamental concept in genetics but is surprisingly hard to define in a rigorous yet useful way. Traditional relatedness coefficients specify expected genome sharing between individuals in pedigrees, but actual genome sharing can differ considerably from these expected values, which in any case vary according to the pedigree that happens to be available. Nowadays, we can measure genome sharing directly from genome-wide single-nucleotide polymorphism (SNP) data; however, there are many such measures in current use, and we lack good criteria for choosing among them. Here, we review SNP-based measures of relatedness and criteria for comparing them. We discuss how useful pedigree-based concepts remain today and highlight opportunities for further advances in quantitative genetics, with a focus on heritability estimation and phenotype prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimation of narrow-sense heritability (h2) using either expected IBD (θ) or realized IBD (θ′) for varying levels of relatedness.
Figure 2: Statistics of IBD genomic regions.
Figure 3: Heritability estimates (ĥ2) and predictive accuracy (r2) for 139 mouse phenotypes using different SNP-based GSMs.

Similar content being viewed by others

References

  1. Grafen, A. A geometric view of relatedness. Oxford Surv. Evol. Biol. 2, 28–90 (1985).

    Google Scholar 

  2. Maynard Smith, J. Evolutionary Genetics (Oxford Univ. Press, 1998).

    Google Scholar 

  3. Rousset, F. Inbreeding and relatedness coefficients: what do they measure? Heredity 88, 371–380 (2002). This paper gives a critical examination of kinship coefficients and proposes a new approach to measure kinship based on a cumulative excess of recent coalescences.

    Article  CAS  PubMed  Google Scholar 

  4. Powell, J., Visscher, P. & Goddard, M. Reconciling the analysis of IBD and IBS in complex trait studies. Nature Rev. Genet. 11, 800–805 (2010). This is a review on IBS and IBD concepts, with a focus on choice of reference population; it also discusses SNP-based computation of relatedness coefficients and their use in heritability estimation.

    Article  CAS  PubMed  Google Scholar 

  5. Weir, B., Anderson, A. & Hepler, A. Genetic relatedness analysis: modern data and new challenges. Nature Rev. Genet. 7, 771–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Kong, A. et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature 467, 1099–1103 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Corr, P. & Kippen, R. The case for parity and birth-order statistics. Aust. N. Z. J. Stat. 48, 171–200 (2006).

    Article  Google Scholar 

  8. Calboli, F., Sampson, J., Fretwell, N. & Balding, D. Population structure and inbreeding from pedigree analysis of purebred dogs. Genetics 179, 593–601 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thompson, E. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics 194, 301–326 (2013). This is an extensive review on the IBD concept that covers many applications and citations to early literature. We disagree with the conceptual framework, but there is much that is valuable in this review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Visscher, P. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006). This paper introduces a clever innovation for heritability estimation and is the first to exploit differences in realized IBD among pairs of individuals with the same pedigree-based relatedness.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hill, W. G. On estimation of genetic variance within families using genome-wide identity-by-descent sharing. Genet. Sel. Evol. 45, 32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Falconer, D. & Mackay, T. Introduction to Quantitative Genetics 4th edn (Longman, 1996).

    Google Scholar 

  14. Donnelly, K. The probability that related individuals share some section of genome identical by descent. Theor. Popul. Biol. 23, 34–63 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nature Genet. 40, 1068–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Crow, J. & Kimura, M. An Introduction to Population Genetics Theory (Harper and Row, 1970).

    Google Scholar 

  17. Wright, S. The genetical structure of populations. Ann. Eugen. 15, 159–171 (1951).

    Google Scholar 

  18. Wright, S. Coefficients of inbreeding and relationship. Amer. Nat. 61, 330–338 (1922).

    Article  Google Scholar 

  19. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Csillery, K. et al. Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics 173, 2091–2101 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Oliehoek, P., Windig, J., van Arendonk, J. & Bijma, P. Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173, 483–496 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Beaumont, M. in Handbook of Statistical Genetics (eds Balding, D., Bishop, M. & Cannings, C.) Ch. 30 (Wiley, 2007).

    Google Scholar 

  23. Thompson, E. The estimation of pairwise relationships. Ann. Hum. Genet. 39, 173–188 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Santure, A. et al. On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol. Ecol. 19, 1439–1451 (2010).

    Article  PubMed  Google Scholar 

  25. Lopes, M. et al. Improved estimation of inbreeding and kinship in pigs using optimized SNP panels. BMC Genet. 14, 92 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nordborg, M. in Handbook of Statistical Genetics (eds Balding, D., Bishop, M. & Cannings, C.) Ch. 25 (Wiley, 2007).

    Google Scholar 

  27. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Astle, W. & Balding, D. Population structure and cryptic relatedness in genetic association studies. Statist. Sci. 24, 451–471 (2009).

    Article  Google Scholar 

  29. Malécot, G. The Mathematics of Heredity (Freeman, 1969).

    Google Scholar 

  30. Sved, J. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theoretical Popul. Biol. 2, 125–141 (1971).

    Article  CAS  Google Scholar 

  31. Hayes, B., Visscher, P., McPartlan, H. & Goddard, M. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 13, 635–643 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lawson, D. & Falush, D. Population identification using genetic data. Annu. Rev. Genet. 13, 337–361 (2012). This is a review on available GSMs, both that do and do not take account of linkage, from the perspective of classifying individuals into populations.

    Article  CAS  Google Scholar 

  33. Graffelman, J., Balding, D., Gonzalez-Neira, A. & Bertranpetit, J. Variation in estimated recombination rates across human populations. Hum. Genet. 122, 301–310 (2007).

    Article  PubMed  Google Scholar 

  34. Wegmann, D. et al. Recombination rates in admixed individuals identified by ancestry-based inference. Nature Genet. 43, 847–853 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Ralph, P. & Coop, G. The geography of recent genetic ancestry across europe. PLoS Biol. 11, e1001555 (2013). This paper investigates IBD genome sharing across Europe and how this reflects population size and migrations over recent millennia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Forni, S., Aguilar, I. & Misztal, I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 43, 1–7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. Y. S., Goddard, M. & Visscher, P. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Toro, M. et al. Estimation of coancestry in Iberian pigs using molecular markers. Conserv. Genet. 3, 309–320 (2002).

    Article  CAS  Google Scholar 

  39. Purcell, S. et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Habier, D., Fernando, R. & Dekkers, J. The impact of genetic relationship information on genome-assisted breeding values. Genetics 177, 2389–2397 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. VanRaden, P. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Loiselle, B., Sork, V., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).

    Article  Google Scholar 

  44. Amin, N., van Duijn, C. & Aulchenko, Y. A genomic background based method for association analysis in related individuals. PLoS ONE 2, e1274 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Price, A. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Speed, D., Hemani, G., Johnson, M. & Balding, D. Improved heritability estimation from genome-wide SNP data. Am. J. Hum. Genet. 91, 1011–1021 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li, Y., Willer, C., Ding, J., Scheet, P. & Abecasis, G. Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Browning, B. & Browning, S. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Delaneau, O., Zagury, J. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods 10, 5–6 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using singlenucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Thompson, E. The IBD process along four chromosomes. Theor. Popul. Biol. 73, 369–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gusev, A. et al. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19, 318–326 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bercovici, S., Meek, C., Wexler, Y. & Geiger, D. Estimating genome-wide IBD sharing from SNP data via an efficient hidden Markov model of LD with application to gene mapping. Bioinformatics 26, i175–i182 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Moltke, I., Albrechtsen, A., Hansen, T., Nielsen, F. & Nielsen, R. A method for detecting IBD regions simultaneously in multiple individuals — with applications to disease genetics. Genome Res. 121, 1168–1180 (2011).

    Article  CAS  Google Scholar 

  57. Browning, B. & Browning, S. A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88, 173–182 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Browning, B. & Browning, S. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li, H. et al. Relationship estimation from whole-genome sequence data. PLoS Genet. 10, e1004144 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Durand, E., Eriksson, N. & McLean, C. Reducing pervasive false-positive identical-by-descent segments detected by large-scale pedigree analysis. Mol. Biol. Evol. 31, 2212–2222 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hellenthal, G., Auton, A. & Falush, D. Inferring human colonization history using a copying model. PLoS Genet. 4, e1000078 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Corbeil, R. & Searle, S. Restricted maximum likelihood (REML) estimation of variance components in the mixed model. Technometrics 18, 31–38 (1976).

    Article  Google Scholar 

  63. Henderson, C. Estimation of genetic parameters. Ann. Math. Stat. 21, 309–310 (1950).

    Google Scholar 

  64. Henderson, C., Kempthorne, O., Searle, S. & von Krosigk, C. The estimation of environmental and genetic trends from records subject to culling. Biometrics 15, 192–218 (1959).

    Article  Google Scholar 

  65. Mousseau, T., Ritland, K. & Heath, D. A novel method for estimating heritability using molecular markers. Heredity 80, 218–224 (1998).

    Article  Google Scholar 

  66. Hayes, B., Bowman, P., Chamberlain, A. & Goddard, M. Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92, 433–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Goddard, M. & Hayes, B. Genomic selection. J. Anim. Breed. Genet. 124, 323–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Goddard, M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 139, 245–257 (2009).

    Article  Google Scholar 

  69. Scutari, M., Mackay, I. & Balding, D. Improving the efficiency of genomic selection. Stat. Appl. Genet. Mol. 12, 517–527 (2013).

    Google Scholar 

  70. Makowsky, R. et al. Beyond missing heritability: prediction of complex traits. PLoS Genet. 7, e1002051 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. de los Campos, G., Hickey, J., Pong-Wong, R. & Daetwyler, H. Whole genome regression and prediction methods applied to plan and animal breeding. Genetics 193, 327–345 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Visscher, P. et al. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dickson, S., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yang, J. et al. Genomic partitioning of genetic variation for complex traits using common SNPs. Nature Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. de los Campos, G., Gianola, D. & Allison, D. Predicting genetic predisposition in humans: the promise of whole-genome markers. Nature Rev. Genet. 11, 880–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e03348 (2013).

    Article  Google Scholar 

  77. Wray, N. et al. Pitfalls of predicting complex traits from SNPs. Nature Rev. Genet. 14, 507–515 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Speed, D. et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain 137, 2680–2689 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14, 000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  80. Dempster, E. & Lerner, I. Heritability of threshold characters. Genetics 35, 212–236 (1950).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet. 38, 879–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, X., Carbonetto, P. & Stephens, M. Polygeneic modeling with Bayesian sparse linear mixed models. PLoS. Genet. 9, e1003264 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Speed, D. & Balding, D. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 24, 1550–1557 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lippert, C. et al. The benefits of selecting phenotype-specific variants for applications of mixed models in genomics. Sci. Rep. 3, 1815 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cockerham, C. Higher order probability functions of identity of alleles by descent. Genetics 69, 235–246 (1971).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Cannings, C. & Thomas, A. in Handbook of Statistical Genetics (eds Balding, D., Bishop, M. & Cannings, C.) Ch. 23 (Wiley, 2007).

    Google Scholar 

  87. Jacquard, A. The Genetic Structure of Populations (Springer, 1974).

    Book  Google Scholar 

  88. Cotterman, C. A. in Genetics and Social Structure (ed. Ballonoff, P. A.) 157–272 (Dowden, Hutchinson & Ross, 1974).

    Google Scholar 

  89. Guo, S. Variation in genetic identity among relatives. Hum. Hered. 46, 61–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Hill, W. G. & Weir, B. S. Variation in actual relationship among descendants of inbred individuals. Genet. Res. 94, 267–274 (2012).

    Article  CAS  Google Scholar 

  91. Fisher, R. The Theory of Inbreeding (Oliver and Boyd, 1949).

    Google Scholar 

  92. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Slatkin, M. Inbreeding coefficients and coalescence times. Genet. Res. 58, 167–175 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank G. Hellenthal and D. Kennett (both University College London), and M. Beaumont (University of Bristol) for discussion. This work is funded by the UK Medical Research Council under grant G0901388, with support from the National Institute for Health Research University College London Hospitals Biomedical Research Centre. Access to Wellcome Trust Case Control Consortium data was authorized as work related to the project “Genome-wide association study of susceptibility and clinical phenotypes in epilepsy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Balding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (Box)

Details of simulations (PDF 133 kb)

Supplementary information S2 (Box)

DNA and pedigree ancestors (PDF 120 kb)

Supplementary information S3 (Box)

Estimating effective population size (PDF 78 kb)

Supplementary information S4 (Box)

Pedigrees generate genome-wide dependence among coalescent trees (PDF 102 kb)

Supplementary information S5 (Box)

Expected IBD region length and expected number of regions shared IBD (PDF 92 kb)

Supplementary information S6 (Box)

Probability that IBD implies IBS (PDF 87 kb)

Supplementary information S7 (Box)

Mixed model likelihood (PDF 92 kb)

Supplementary information S8 (Box)

Inferring the power parameter α (PDF 142 kb)

Glossary

Relatedness

Two individuals are related if they have a recent common ancestor, where 'recent' can be variously defined as outlined under IBD (identity-by-descent).

IBD

(Identity-by-descent; also identical-by-descent). The phenomenon whereby two individuals share a genomic region as a result of inheritance from a recent common ancestor, where 'recent' can mean from an ancestor in a given pedigree, or with no intervening mutation event or with no intervening recombination event.

Pedigree

A set of individuals connected by parent–child relationships.

Most recent common ancestor

(MRCA). Although the ancestries of two alleles may both pass through the same individual, they pass through different alleles with probability 0.5, in which case that individual is not the MRCA of the alleles.

Time since the MRCA

(TMRCA; in generations). If the times back to a common ancestor differ between two individuals, then the average is used.

Heritability

The proportion of phenotypic variation that can be attributed to any genetic variation (broad-sense heritability) or to additive genetic variation (narrow-sense heritability (h2)).

Lineage paths

Sequences of parent–child steps linking individuals with length equal to the number of steps.

Coancestry

(θ). A kinship coefficient defined as the probability that two homologous alleles, one drawn from each of two individuals, are IBD (identical-by-descent).

Inbreeding coefficients

The coancestries of the two parents of an individual.

Maximum likelihood estimators

Estimates of unknown parameters obtained by maximizing the likelihood for the observed data given a statistical model.

Method of moments estimators

Estimates of unknown parameters obtained by equating theoretical moments (for example, mean, variance and skewness) under the assumed statistical model to empirical moments calculated from the observed data.

Coalescent tree

Each leaf of the tree corresponds to an observed allele, and the root represents the most recent common ancestor (MRCA) of all observed alleles. The internal nodes (branching points) represent the MRCA of the alleles at the leaves connected to that node (without passing the root). Distances along branches represent time, measured in generations.

IBS

(Identical-by-state; also identity-by-state). When two homologous alleles have matching type. Some definitions of IBS exclude IBD (identity-by-descent).

Linkage disequilibrium

(LD). A population correlation of allele pairs drawn at different genomic loci in the same gamete (that is, in a haploid genome).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speed, D., Balding, D. Relatedness in the post-genomic era: is it still useful?. Nat Rev Genet 16, 33–44 (2015). https://doi.org/10.1038/nrg3821

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing