Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optogenetic and chemogenetic techniques for neurogastroenterology

Key Points

  • Optogenetic actuators are light-driven proteins able to perturb electrochemical signals, whereas optogenetic indicators are capable of reporting changes in cellular activity

  • Chemogenetic actuators are engineered receptors that are activated or inhibited by synthetic ligands to alter cellular signal transduction

  • Optogenetic and chemogenetic tools involve genetically encoded proteins that can be targeted to specific cell types via a variety of transgene expression strategies

  • The methods to deliver light and designer drugs need to be carefully selected and depend on whether experiments are to be conducted on organs, multiple cells or single cells

  • In combination with advances in microscopy, optogenetics and chemogenetics provide tools that can be used to investigate the role of specific cell types and signalling pathways in gastrointestinal function

Abstract

Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic overview of available genetically encoded actuators and indicators.
Figure 3: Schematic overview of strategies to target genetically encoded tools to specific cell types.
Figure 4: Different methods to express GCaMPs in the enteric nervous system.
Figure 5: Stimulation and excitation methods for optogenetic and chemogenetic experiments in neurogastroenterology.
Figure 6: Different methods of expressing channelrhodopsin 2 in the enteric nervous system.

Similar content being viewed by others

References

  1. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Mayer, E. A. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    CAS  PubMed  Google Scholar 

  3. Foster, J. A. & McVey Neufeld, K. A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36, 305–312 (2013).

    CAS  PubMed  Google Scholar 

  4. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wood, J. D. Enteric nervous system: reflexes, pattern generators and motility. Curr. Opin. Gastroenterol. 24, 149–158 (2008).

    PubMed  Google Scholar 

  6. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil. 16 (Suppl. 1), 28–33 (2004).

    PubMed  Google Scholar 

  8. Brierley, S. M. & Linden, D. R. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 11, 611–627 (2014).

    PubMed  Google Scholar 

  9. Brookes, S. J., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).

    CAS  PubMed  Google Scholar 

  10. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151, 836–844 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hao, M. M. et al. Enteric nervous system assembly: Functional integration within the developing gut. Dev. Biol. 417, 168–181 (2016).

    CAS  PubMed  Google Scholar 

  12. Kabouridis, P. S. & Pachnis, V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Invest. 125, 956–964 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Bohorquez, D. V. & Liddle, R. A. The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Adamantidis, A. et al. Optogenetics: 10 years after ChR2 in neurons — views from the community. Nat. Neurosci. 18, 1202–1212 (2015).

    CAS  PubMed  Google Scholar 

  17. Miesenbock, G. The optogenetic catechism. Science 326, 395–399 (2009).

    PubMed  Google Scholar 

  18. Crick, F. The impact of molecular biology on neuroscience. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 2021–2025 (1999).

    CAS  Google Scholar 

  19. Fork, R. L. Laser stimulation of nerve cells in Aplysia. Science 171, 907–908 (1971).

    CAS  PubMed  Google Scholar 

  20. Zemelman, B. V., Lee, G. A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    CAS  PubMed  Google Scholar 

  21. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    CAS  PubMed  Google Scholar 

  22. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  PubMed  Google Scholar 

  23. Berthold, P. et al. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization. Plant Cell 20, 1665–1677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsunoda, S. P. & Hegemann, P. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Photochem. Photobiol. 85, 564–569 (2009).

    CAS  PubMed  Google Scholar 

  25. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  26. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    CAS  PubMed  Google Scholar 

  27. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    CAS  PubMed  Google Scholar 

  28. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Yang, H. H. & St-Pierre, F. Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36, 9977–9989 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Coward, P. et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc. Natl Acad. Sci. USA 95, 352–357 (1998).

    CAS  PubMed  Google Scholar 

  31. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed  Google Scholar 

  32. Sternson, S. M. & Roth, B. L. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387–407 (2014).

    CAS  PubMed  Google Scholar 

  33. Whissell, P. D., Tohyama, S. & Martin, L. J. The use of DREADDs to deconstruct behavior. Front. Genet. 7, 70 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schneider, F., Grimm, C. & Hegemann, P. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44, 167–186 (2015).

    CAS  PubMed  Google Scholar 

  36. Zemelman, B. V., Nesnas, N., Lee, G. A. & Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl Acad. Sci. USA 100, 1352–1357 (2003).

    CAS  PubMed  Google Scholar 

  37. Lima, S. Q. & Miesenbock, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    CAS  PubMed  Google Scholar 

  38. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    CAS  PubMed  Google Scholar 

  39. Zhao, S. et al. Cell-type specific optogenetic mice for dissecting neural circuitry function. Nat. Methods 8, 745–752 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    CAS  PubMed  Google Scholar 

  42. Kato, H. E. et al. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482, 369–374 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gunaydin, L. A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    CAS  PubMed  Google Scholar 

  44. Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

    CAS  PubMed  Google Scholar 

  45. Pan, Z.-H., Ganjawala, T. H., Lu, Q., Ivanova, E. & Zhang, Z. ChR2 Mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS ONE 9, e98924 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chow, B. Y., Han, X. & Boyden, E. S. Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog. Brain Res. 196, 49–61 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971).

    CAS  PubMed  Google Scholar 

  52. Han, X. & Boyden, E. S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    PubMed  PubMed Central  Google Scholar 

  55. Berndt, A., Lee, S. Y., Ramakrishnan, C. & Deisseroth, K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344, 420–424 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wietek, J. et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344, 409–412 (2014).

    CAS  PubMed  Google Scholar 

  57. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Watanabe, M. & Fukuda, A. Development and regulation of chloride homeostasis in the central nervous system. Front. Cell. Neurosci. 9, 371 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Kang, S. H., Vanden Berghe, P. & Smith, T. K. Ca2+-activated Cl current in cultured myenteric neurons from murine proximal colon. Am. J. Physiol. Cell Physiol. 284, C839–C847 (2003).

    CAS  PubMed  Google Scholar 

  60. Cherubini, E. & North, R. A. Actions of gamma-aminobutyric acid on neurones of guinea-pig myenteric plexus. Br. J. Pharmacol. 82, 93–100 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao, S. et al. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat. Commun. 6, 8046 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Peter, E., Dick, B. & Baeurle, S. A. Mechanism of signal transduction of the LOV2-Jalpha photosensor from Avena sativa. Nat. Commun. 1, 122 (2010).

    PubMed  Google Scholar 

  63. van Bergeijk, P., Adrian, M., Hoogenraad, C. C. & Kapitein, L. C. Optogenetic control of organelle transport and positioning. Nature 518, 111–114 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Knopfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    PubMed  Google Scholar 

  65. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999).

    CAS  PubMed  Google Scholar 

  66. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    CAS  PubMed  Google Scholar 

  67. Zariwala, H. A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, J. et al. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chem. Neurosci. 4, 963–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamada, Y. & Mikoshiba, K. Quantitative comparison of novel GCaMP-type genetically encoded Ca2+ indicators in mammalian neurons. Front. Cell. Neurosci. 6, 41 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Zou, P. et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5, 4625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gong, Y., Wagner, M. J., Zhong Li, J. & Schnitzer, M. J. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat. Commun. 5, 3674 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Ghitani, N., Bayguinov, P. O., Ma, Y. & Jackson, M. B. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor. J. Neurophysiol. 113, 1249–1259 (2015).

    PubMed  Google Scholar 

  76. Cao, G. et al. Genetically targeted optical electrophysiology in intact neural circuits. Cell 154, 904–913 (2013).

    CAS  PubMed  Google Scholar 

  77. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    CAS  PubMed  Google Scholar 

  78. Lou, S. et al. Genetically targeted all-optical electrophysiology with a transgenic Cre-dependent optopatch mouse. J. Neurosci. 36, 11059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kralj, J. M., Hochbaum, D. R., Douglass, A. D. & Cohen, A. E. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333, 345–348 (2011).

    CAS  PubMed  Google Scholar 

  80. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    CAS  PubMed  Google Scholar 

  81. Li, Z. et al. Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proc. Natl Acad. Sci. USA 102, 6131–6136 (2005).

    CAS  PubMed  Google Scholar 

  82. Vanden Berghe, P., Tack, J. & Boesmans, W. Highlighting synaptic communication in the enteric nervous system. Gastroenterology 135, 20–23 (2008).

    CAS  PubMed  Google Scholar 

  83. Granseth, B., Odermatt, B., Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    CAS  PubMed  Google Scholar 

  84. Arranz, A. M. et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J. Cell Sci. 128, 541–552 (2015).

    CAS  PubMed  Google Scholar 

  85. Granseth, B. & Lagnado, L. The role of endocytosis in regulating the strength of hippocampal synapses. J. Physiol. 586, 5969–5982 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, Y. & Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rogan, S. C. & Roth, B. L. Remote control of neuronal signaling. Pharmacol. Rev. 63, 291–315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Strader, C. D. et al. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8 (1991).

    CAS  PubMed  Google Scholar 

  89. Claeysen, S., Joubert, L., Sebben, M., Bockaert, J. & Dumuis, A. A single mutation in the 5-HT4 receptor (5-HT4-R D100(3.32)A) generates a Gs-coupled receptor activated exclusively by synthetic ligands (RASSL). J. Biol. Chem. 278, 699–702 (2003).

    CAS  PubMed  Google Scholar 

  90. Bruysters, M., Jongejan, A., Akdemir, A., Bakker, R. A. & Leurs, R. A. Gq/11-coupled mutant histamine H(1) receptor F435A activated solely by synthetic ligands (RASSL). J. Biol. Chem. 280, 34741–34746 (2005).

    CAS  PubMed  Google Scholar 

  91. Kristiansen, K. et al. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a “salt-bridge disruption” mechanism. J. Pharmacol. Exp. Ther. 293, 735–746 (2000).

    CAS  PubMed  Google Scholar 

  92. Srinivasan, S., Vaisse, C. & Conklin, B. R. Engineering the melanocortin-4 receptor to control Gs signaling in vivo. Ann. NY Acad. Sci. 994, 225–232 (2003).

    CAS  PubMed  Google Scholar 

  93. Conklin, B. R. et al. Engineering GPCR signaling pathways with RASSLs. Nat. Methods 5, 673–678 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pei, Y., Rogan, S. C., Yan, F. & Roth, B. L. Engineered GPCRs as tools to modulate signal transduction. Physiology 23, 313 (2008).

    CAS  PubMed  Google Scholar 

  95. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Parnaudeau, S. et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77, 1151–1162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Guettier, J. M. et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    CAS  PubMed  Google Scholar 

  100. Jann, M. W., Lam, Y. W. & Chang, W. H. Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch. Int. Pharmacodyn. Ther. 328, 243–250 (1994).

    CAS  PubMed  Google Scholar 

  101. Raper, J. et al. Metabolism and distribution of clozapine-N-oxide: implications for nonhuman primate chemogenetics. ACS Chem. Neurosci. 8, 1570–1576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, Z. J. & Zeng, H. Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36, 183–215 (2013).

    CAS  PubMed  Google Scholar 

  103. Sjulson, L., Cassataro, D., DasGupta, S. & Miesenbock, G. Cell-specific targeting of genetically encoded tools for neuroscience. Annu. Rev. Genet. 50, 571–594 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sasselli, V. et al. Planar cell polarity genes control the connectivity of enteric neurons. J. Clin. Invest. 123, 1763–1772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    CAS  PubMed  Google Scholar 

  106. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6, e18556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ryan, M. D., King, A. M. & Thomas, G. P. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72, 2727–2732 (1991).

    CAS  PubMed  Google Scholar 

  108. Trichas, G., Begbie, J. & Srinivas, S. Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol. 6, 40 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).

    CAS  PubMed  Google Scholar 

  110. Shikama, Y. et al. Transcripts expressed using a bicistronic vector pIREShyg2 are sensitized to nonsense-mediated mRNA decay. BMC Mol. Biol. 11, 42 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

  113. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  114. Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    CAS  PubMed  Google Scholar 

  115. Caroni, P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9 (1997).

    CAS  PubMed  Google Scholar 

  116. Yawo, H., Asano, T., Sakai, S. & Ishizuka, T. Optogenetic manipulation of neural and non-neural functions. Dev. Growth Differ. 55, 474–490 (2013).

    CAS  PubMed  Google Scholar 

  117. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2, 861–870 (2001).

    CAS  PubMed  Google Scholar 

  118. Shui, B., Lee, J. C., Reining, S., Lee, F. K. & Kotlikoff, M. I. Optogenetic sensors and effectors: CHROMus-the Cornell Heart Lung Blood Institute Resource for Optogenetic Mouse Signaling. Front. Physiol. 5, 428 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Boesmans, W., Rocha, N. P., Reis, H. J., Holt, M. & Vanden Berghe, P. The astrocyte marker Aldh1L1 does not reliably label enteric glial cells. Neurosci. Lett. 566, 102–105 (2014).

    CAS  PubMed  Google Scholar 

  120. Halpern, M. E. et al. Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5, 97–110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Heanue, T. A. et al. A novel zebrafish ret heterozygous model of Hirschsprung disease identifies a functional role for mapk10 as a modifier of enteric nervous system phenotype severity. PLoS Genet. 12, e1006439 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1–15 (2002).

    CAS  PubMed  Google Scholar 

  123. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6232–6236 (1992).

    CAS  PubMed  Google Scholar 

  124. Boesmans, W., Hao, M. M. & Vanden Berghe, P. Optical tools to investigate cellular activity in the intestinal wall. J. Neurogastroenterol. Motil. 21, 337–351 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  126. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  PubMed  Google Scholar 

  127. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998).

    CAS  PubMed  Google Scholar 

  129. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    CAS  PubMed  Google Scholar 

  130. Metzger, D., Clifford, J., Chiba, H. & Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl Acad. Sci. USA 92, 6991–6995 (1995).

    CAS  PubMed  Google Scholar 

  131. Furth, P. A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA 91, 9302–9306 (1994).

    CAS  PubMed  Google Scholar 

  132. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  Google Scholar 

  133. Gulbransen, B. D. Emerging tools to study enteric neuromuscular function. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G420–G426 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Huh, W. J. et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142, 21–24.e7 (2012).

    CAS  PubMed  Google Scholar 

  135. Buckinx, R. & Timmermans, J. P. Targeting the gastrointestinal tract with viral vectors: state of the art and possible applications in research and therapy. Histochem. Cell Biol. 146, 709–720 (2016).

    CAS  PubMed  Google Scholar 

  136. Benskey, M. J. et al. Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants. Mol. Ther. 23, 488–500 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Buckinx, R., Van Remoortel, S., Gijsbers, R., Waddington, S. N. & Timmermans, J. P. Proof-of-concept: neonatal intravenous injection of adeno-associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine. Neurogastroenterol. Motil. 28, 299–305 (2016).

    CAS  PubMed  Google Scholar 

  138. Gombash, S. E. et al. Intravenous AAV9 efficiently transduces myenteric neurons in neonate and juvenile mice. Front. Mol. Neurosci. 7, 81 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. Schuster, D. J. et al. Visualization of spinal afferent innervation in the mouse colon by AAV8-mediated GFP expression. Neurogastroenterol. Motil. 25, e89–e100 (2013).

    CAS  PubMed  Google Scholar 

  140. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Salegio, E. A. et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 20, 348–352 (2013).

    CAS  PubMed  Google Scholar 

  142. Stamatakis, A. M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    CAS  PubMed  Google Scholar 

  143. Kuhlman, S. J. & Huang, Z. J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE 3, e2005 (2008).

    PubMed  PubMed Central  Google Scholar 

  144. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ahmed, B. Y. et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci. 5, 4 (2004).

    PubMed  PubMed Central  Google Scholar 

  147. Wickersham, I. R. & Feinberg, E. H. New technologies for imaging synaptic partners. Curr. Opin. Neurobiol. 22, 121–127 (2012).

    CAS  PubMed  Google Scholar 

  148. Bohorquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).

    PubMed  PubMed Central  Google Scholar 

  149. Cooper, J. E. et al. In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS ONE 11, e0147989 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Hotta, R. et al. Isogenic enteric neural progenitor cells can replace missing neurons and glia in mice with Hirschsprung disease. Neurogastroenterol. Motil. 28, 498–512 (2016).

    CAS  PubMed  Google Scholar 

  151. Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J. Clin. Invest. 123, 1182–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Burns, A. J. et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev. Biol. 417, 229–251 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Knowles, C. H., Lindberg, G., Panza, E. & De Giorgio, R. New perspectives in the diagnosis and management of enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol. 10, 206–218 (2013).

    CAS  PubMed  Google Scholar 

  154. Burns, A. J. & Thapar, N. Neural stem cell therapies for enteric nervous system disorders. Nat. Rev. Gastroenterol. Hepatol. 11, 317–328 (2014).

    PubMed  Google Scholar 

  155. Kulkarni, S., Becker, L. & Pasricha, P. J. Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? Gut 61, 613–621 (2012).

    CAS  PubMed  Google Scholar 

  156. Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues gastric function in neuronal nitric oxide synthase-deficient mice. Gastroenterology 129, 1817–1824 (2005).

    CAS  PubMed  Google Scholar 

  157. Natarajan, D. et al. Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies. Neurogastroenterol. Motil. 26, 1513–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Cooper, J. E. et al. In vivo transplantation of fetal human gut-derived enteric neural crest cells. Neurogastroenterol. Motil. 29, e12900 (2016).

    PubMed Central  Google Scholar 

  159. Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

    CAS  PubMed  Google Scholar 

  160. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).

    CAS  PubMed  Google Scholar 

  162. Rungta, R. L., Osmanski, B. F., Boido, D., Tanter, M. & Charpak, S. Light controls cerebral blood flow in naive animals. Nat. Commun. 8, 14191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Goto, K. et al. In vivo imaging of enteric neurogenesis in the deep tissue of mouse small intestine. PLoS ONE 8, e54814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rakhilin, N. et al. Simultaneous optical and electrical in vivo analysis of the enteric nervous system. Nat. Commun. 7, 11800 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8, 583–594 (2013).

    CAS  PubMed  Google Scholar 

  167. Warden, M. R., Cardin, J. A. & Deisseroth, K. Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103–129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS  PubMed  Google Scholar 

  169. Abaya, T. V. et al. Deep-tissue light delivery via optrode arrays. J. Biomed. Opt. 19, 15006 (2014).

    PubMed  Google Scholar 

  170. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Montgomery, K. L., Iyer, S. M., Christensen, A. J., Deisseroth, K. & Delp, S. L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl Med. 8, 337rv5 (2016).

    PubMed  Google Scholar 

  172. Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Packer, A. M., Russell, L. E., Dalgleish, H. W. & Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    CAS  PubMed  Google Scholar 

  174. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Boesmans, W. et al. Imaging neuron-glia interactions in the enteric nervous system. Front. Cell. Neurosci. 7, 183 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. Hao, M. M. et al. Early emergence of neural activity in the developing mouse enteric nervous system. J. Neurosci. 31, 15352–15361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Foong, J. P. et al. Changes in nicotinic neurotransmission during enteric nervous system development. J. Neurosci. 35, 7106–7115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Hennig, G. W. et al. Use of genetically encoded calcium indicators (GECIs) combined with advanced motion tracking techniques to examine the behavior of neurons and glia in the enteric nervous system of the intact murine colon. Front. Cell. Neurosci. 9, 436 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Qu, Z. D. et al. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 334, 147–161 (2008).

    CAS  PubMed  Google Scholar 

  180. Bergner, A. J. et al. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J. Comp. Neurol. 522, 514–527 (2014).

    CAS  PubMed  Google Scholar 

  181. Hao, M. M., Bornstein, J. C. & Young, H. M. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice. J. Comp. Neurol. 521, 3358–3370 (2013).

    CAS  PubMed  Google Scholar 

  182. McClain, J. L. & Gulbransen, B. D. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function and the expression of key proteins. J. Neurophysiol. 117, 365–375 (2016).

    PubMed  PubMed Central  Google Scholar 

  183. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Paratore, C., Eichenberger, C., Suter, U. & Sommer, L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum. Mol. Genet. 11, 3075–3085 (2002).

    CAS  PubMed  Google Scholar 

  185. Young, H. M., Bergner, A. J. & Muller, T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J. Comp. Neurol. 456, 1–11 (2003).

    PubMed  Google Scholar 

  186. Baker, S. A. et al. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J. Physiol. 594, 3317–3338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Pais, R., Gribble, F. M. & Reimann, F. Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells. Peptides 77, 9–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. D'Autreaux, F. et al. Expression level of Hand2 affects specification of enteric neurons and gastrointestinal function in mice. Gastroenterology 141, 576–587 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. D'Autreaux, F., Morikawa, Y., Cserjesi, P. & Gershon, M. D. Hand2 is necessary for terminal differentiation of enteric neurons from crest-derived precursors but not for their migration into the gut or for formation of glia. Development 134, 2237–2249 (2007).

    CAS  PubMed  Google Scholar 

  190. Hendershot, T. J. et al. Expression of Hand2 is sufficient for neurogenesis and cell type-specific gene expression in the enteric nervous system. Dev. Dyn. 236, 93–105 (2007).

    CAS  PubMed  Google Scholar 

  191. Ruest, L. B. et al. dHAND-Cre transgenic mice reveal specific potential functions of dHAND during craniofacial development. Dev. Biol. 257, 263–277 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim, Y. S. et al. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron 81, 873–887 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kim, A. Y. et al. Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133, 475–485 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Stamp, L. A. et al. Optogenetic demonstration of functional innervation of mouse colon by neurons derived from transplanted neural cells. Gastroenterology 152, 1407–1418 (2017).

    PubMed  Google Scholar 

  195. McClain, J. L., Fried, D. E. & Gulbransen, B. D. Agonist-evoked Ca signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell. Mol. Gastroenterol. Hepatol. 1, 631–645 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. Grubisic, V. & Gulbransen, B. D. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J. Physiol. 595, 3409–3424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kimball, B. C. & Mulholland, M. W. Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J. Neurochem. 66, 604–612 (1996).

    CAS  PubMed  Google Scholar 

  198. Agulhon, C. et al. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J. Physiol. 591, 5599–5609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Boesmans, W. & Vanden Berghe, P. Chemogenetic versus recombination-driven manipulation of enteric glia. J. Physiol. 595, 3255–3256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Grubisic, V. & Gulbransen, B. D. Enteric glia: the most alimentary of all glia. J. Physiol. 595, 557–570 (2017).

    CAS  PubMed  Google Scholar 

  201. Feng, B., Joyce, S. C. & Gebhart, G. F. Optogenetic activation of mechanically insensitive afferents in mouse colorectum reveals chemosensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G790–G798 (2016).

    PubMed  PubMed Central  Google Scholar 

  202. Lewin, A. E. et al. Optogenetic and pharmacological evidence that somatostatin-GABA neurons are important regulators of parasympathetic outflow to the stomach. J. Physiol. 594, 2661–2679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Nation, H. L., Nicoleau, M., Kinsman, B. J., Browning, K. N. & Stocker, S. D. DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. J. Neurophysiol. 115, 3123–3129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Mongardi Fantaguzzi, C., Thacker, M., Chiocchetti, R. & Furness, J. B. Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res. 336, 179–189 (2009).

    CAS  PubMed  Google Scholar 

  206. Poulin, J. F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J. M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    PubMed  Google Scholar 

  207. Lasrado, R. et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 356, 722–726 (2017).

    CAS  PubMed  Google Scholar 

  208. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Golding, B. et al. Retinal input directs the recruitment of inhibitory interneurons into thalamic visual circuits. Neuron 81, 1057–1069 (2014).

    CAS  PubMed  Google Scholar 

  210. Land, B. B. et al. Medial prefrontal D1 dopamine neurons control food intake. Nat. Neurosci. 17, 248–253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    CAS  PubMed  Google Scholar 

  212. Vanden Berghe, P. & Klingauf, J. Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system. Neuroscience 145, 88–99 (2007).

    CAS  PubMed  Google Scholar 

  213. Brierley, S. M., Hughes, P. A., Harrington, A. M., Rychkov, G. Y. & Blackshaw, L. A. Identifying the ion channels responsible for signaling gastro-intestinal based pain. Pharmaceuticals 3, 2768–2798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Greenwood-Van Meerveld, B., Prusator, D. K. & Johnson, A. C. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G885–903 (2015).

    PubMed  Google Scholar 

  215. Goverse, G., Stakenborg, M. & Matteoli, G. The intestinal cholinergic anti-inflammatory pathway. J. Physiol. 594, 5771–5780 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Pavlov, V. A. & Tracey, K. J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20, 156–166 (2017).

    CAS  PubMed  Google Scholar 

  217. Gulbransen, B. D. & Sharkey, K. A. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136, 1349–1358 (2009).

    CAS  PubMed  Google Scholar 

  218. Neunlist, M., Peters, S. & Schemann, M. Multisite optical recording of excitability in the enteric nervous system. Neurogastroenterol. Motil. 11, 393–402 (1999).

    CAS  PubMed  Google Scholar 

  219. Vanden Berghe, P., Kenyon, J. L. & Smith, T. K. Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons. J. Neurosci. 22, 6962–6971 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Bisschops, R., Vanden Berghe, P., Sarnelli, G., Janssens, J. & Tack, J. CRF-induced calcium signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1252–G1260 (2006).

    CAS  PubMed  Google Scholar 

  221. Vanden Berghe, P. in The Enteric Nervous System: 30 Years Later (eds Brierley, S. & Costa, M.) 193–199 (Springer International Publishing, 2016).

    Google Scholar 

  222. Wheeler, M. A. et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 19, 756–761 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Cobine, C. A. et al. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J. Physiol. 595, 2021–2041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Groneberg, D. et al. Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology 145, 188–196 (2013).

    CAS  PubMed  Google Scholar 

  225. Klein, S. et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630 (2013).

    PubMed  Google Scholar 

  226. Roesch, K. et al. The transcriptome of retinal Muller glial cells. J. Comp. Neurol. 509, 225–238 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Boesmans, W., Lasrado, R., Vanden Berghe, P. & Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63, 229–241 (2015).

    PubMed  Google Scholar 

  228. Veiga-Fernandes, H. & Pachnis, V. Neuroimmune regulation during intestinal development and homeostasis. Nat. Immunol. 18, 116–122 (2017).

    CAS  PubMed  Google Scholar 

  229. Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633.

Download references

Acknowledgements

The authors' work is supported by the Research Foundation Flanders (FWO) grant G.0921.15 and Methusalem /14/05, University of Leuven, Belgium. M.M.H. and W.B. were supported by postdoctoral fellowships from FWO. M.M.H. is a National Health and Medical Research Council fellow. The authors thank G. Matteoli for the use of R26R–ChR2 mice.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this Review.

Corresponding author

Correspondence to Pieter Vanden Berghe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boesmans, W., Hao, M. & Vanden Berghe, P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 15, 21–38 (2018). https://doi.org/10.1038/nrgastro.2017.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing