Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

BLIMP1 guides the fate of effector B and T cells

Abstract

B-lymphocyte-induced maturation protein 1 (BLIMP1) is a transcriptional repressor, and its importance in controlling the terminal differentiation of antibody-secreting cells (ASCs) is well established. However, as we discuss in this Progress article, it has now become evident that the ASC programme consists of a discrete BLIMP1-independent initiation phase, followed by a second step in which BLIMP1 is absolutely required for the differentiation of fully mature ASCs. In addition, an important role for BLIMP1 in maintaining the homeostasis of effector T cells is emerging, suggesting intriguing parallels between the control of effector-cell fates in both B and T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transcriptional control of late B-cell differentiation.
Figure 2: Model of the interaction of BLIMP1 and IL-2 in T-cell differentiation.
Figure 3: Comparison of BLIMP1 functions in B- and T-cell terminal differentiation.

Similar content being viewed by others

References

  1. Manz, R. A., Hauser, A. E., Hiepe, F. & Radbruch, A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).

    Article  CAS  Google Scholar 

  2. Seder, R. A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunol. 4, 835–842 (2003).

    Article  CAS  Google Scholar 

  3. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol. 5, 230–242 (2005).

    Article  CAS  Google Scholar 

  4. Kallies, A. & Nutt, S. L. Terminal differentiation of lymphocytes depends on Blimp-1. Curr. Opin. Immunol. 19, 156–162 (2007).

    Article  CAS  Google Scholar 

  5. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  Google Scholar 

  6. Schliephake, D. E. & Schimpl, A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-μF(ab′)2-co-stimulated B lymphocytes. Eur. J. Immunol. 26, 268–271 (1996).

    Article  CAS  Google Scholar 

  7. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  Google Scholar 

  8. Shapiro-Shelef, M., Lin, K. I., Savitsky, D., Liao, J. & Calame, K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 202, 1471–1476 (2005).

    Article  CAS  Google Scholar 

  9. Savitsky, D. & Calame, K. B-1 B lymphocytes require Blimp-1 for immunoglobulin secretion. J. Exp. Med. 203, 2305–2314 (2006).

    Article  CAS  Google Scholar 

  10. Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26, 555–566 (2007).

    Article  CAS  Google Scholar 

  11. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  Google Scholar 

  12. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  Google Scholar 

  13. Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol. 173, 1158–1165 (2004).

    Article  CAS  Google Scholar 

  14. Lin, K. I., Angelin-Duclos, C., Kuo, T. C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).

    Article  CAS  Google Scholar 

  15. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  16. Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386 (1996).

    Article  CAS  Google Scholar 

  17. Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).

    Article  CAS  Google Scholar 

  18. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  Google Scholar 

  19. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunol. 7, 773–782 (2006).

    Article  CAS  Google Scholar 

  20. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    Article  CAS  Google Scholar 

  21. Tumang, J. R., Frances, R., Yeo, S. G. & Rothstein, T. L. Spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. J. Immunol. 174, 3173–3177 (2005).

    Article  CAS  Google Scholar 

  22. Fairfax, K. A. et al. Different kinetics of blimp-1 induction in B cell subsets revealed by reporter gene. J. Immunol. 178, 4104–4111 (2007).

    Article  CAS  Google Scholar 

  23. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  Google Scholar 

  24. Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).

    Article  CAS  Google Scholar 

  25. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunol. 7, 466–474 (2006).

    Article  CAS  Google Scholar 

  26. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  Google Scholar 

  27. Gunn, K. E. & Brewer, J. W. Evidence that marginal zone B cells possess an enhanced secretory apparatus and exhibit superior secretory activity. J. Immunol. 177, 3791–3798 (2006).

    Article  CAS  Google Scholar 

  28. Genestier, L. et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol. 178, 7779–7786 (2007).

    Article  CAS  Google Scholar 

  29. Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    Article  CAS  Google Scholar 

  30. Blink, E. J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  Google Scholar 

  31. Kabashima, K. et al. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med. 203, 2683–2690 (2006).

    Article  CAS  Google Scholar 

  32. Gonzalez-Garcia, I., Ocana, E., Jimenez-Gomez, G., Campos-Caro, A. & Brieva, J. A. Immunization-induced perturbation of human blood plasma cell pool: progressive maturation, IL-6 responsiveness, and high PRDI-BF1/BLIMP1 expression are critical distinctions between antigen-specific and nonspecific plasma cells. J. Immunol. 176, 4042–4050 (2006).

    Article  CAS  Google Scholar 

  33. Messika, E. J. et al. Differential effect of B lymphocyte-induced maturation protein (Blimp-1) expression on cell fate during B cell development. J. Exp. Med. 188, 515–525 (1998).

    Article  CAS  Google Scholar 

  34. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  35. Smith, K. G. et al. bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    Article  CAS  Google Scholar 

  36. Martins, G. A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nature Immunol. 7, 457–465 (2006).

    Article  CAS  Google Scholar 

  37. Gong, D. & Malek, T. R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    Article  CAS  Google Scholar 

  38. Santner-Nanan, B. et al. Blimp-1 is expressed in human and mouse T cell subsets and leads to loss of IL-2 production and to defective proliferation. Signal Transduction 6, 268–279 (2006).

    Article  CAS  Google Scholar 

  39. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med 204, 2015–2021 (2007).

    Article  CAS  Google Scholar 

  40. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nature Immunol. 3, 558–563 (2002).

    Article  CAS  Google Scholar 

  41. Pasqualucci, L. et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J. Exp. Med. 203, 311–317 (2006).

    Article  CAS  Google Scholar 

  42. Tam, W. et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood. 107, 4090–4100 (2006).

    Article  CAS  Google Scholar 

  43. Liu, Y. Y. et al. Rituximab plus CHOP (R-CHOP) overcomes PRDM1-associated resistance to chemotherapy in patients with diffuse large B-cell lymphoma. Blood 110, 339–344 (2007).

    Article  CAS  Google Scholar 

  44. Steele-Perkins, G. et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev. 15, 2250–2262 (2001).

    Article  CAS  Google Scholar 

  45. Zeleznik-Le, N. J., Nucifora, G. & Rowley, J. D. The molecular biology of myeloproliferative disorders as revealed by chromosomal abnormalities. Semin. Hematol. 32, 201–219 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Walter and Eliza Hall Institute B Cell Program for helpful discussions and L. Corcoran for comments on the manuscript. This research was supported by the Pfizer Australia Research Fellowship (S.L.N.), the Leukemia & Lymphoma Society (A.K.) and the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Stephen N. Nutt's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nutt, S., Fairfax, K. & Kallies, A. BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 7, 923–927 (2007). https://doi.org/10.1038/nri2204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing