Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endolysosomal proteases and their inhibitors in immunity

Key Points

  • Proteases that are resident in, or released from, the endolysosomal system of leukocytes have important functions in the immune response.

  • Lysosome-related organelles (LROs) or granules are the main protease storage and processing organelles of the endolysosomal system. The range of proteases present in LROs is cell-type specific.

  • Endolysosomal proteolysis can involve relatively non-specific degradation, as in the formation of antigenic peptides by antigen-presenting cells, or precise cleavage events, as in the stepwise degradation of the MHC class II chaperone invariant chain.

  • Some pattern recognition receptors, such as the endosomal members of the Toll-like receptor family, TLR7 and TLR9, are activated by endolysosomal proteases.

  • Many parasites produce endolysosomal proteases of their own, which are used to facilitate host invasion or subvert the host's immune response.

  • The granzyme proteases of cytotoxic T lymphocytes are stored in LROs. They are released following fusion of the LRO with the plasma membrane and function in the killing of target cells or in immune signalling.

  • Release of proteases from LROs into the host cell cytoplasm can trigger apoptosis unless the proteases are countered by cytoplasmic protease inhibitors. Regulated release of endolysosomal proteases might contribute to leukocyte homeostasis.

Abstract

The cellular endolysosomal compartment is dynamic, complex and incompletely understood. Its organelles and constituents vary between different cell types, but endolysosomal proteases are key components of this compartment in all cells. In immune cells, these proteases function in pathogen recognition and elimination, signal processing and cell homeostasis, and they are regulated by dedicated inhibitors. Pathogens can produce analogous proteases to subvert the host immune response. The balance in activity between a protease and its inhibitor can tune the immune response or cause damage as a result of mislocalized proteolysis. In this Review, we highlight recent developments in this area and emphasize the importance of studying the role of endolysosomal proteases, and their natural inhibitors, in the initiation and regulation of immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endolysosomal proteases in pathogen detection and antigen presentation.
Figure 2: Immunomodulatory roles of parasite proteases.
Figure 3: Endolysosomal proteases and cell death.

Similar content being viewed by others

References

  1. Dell'Angelica, E. C., Mullins, C., Caplan, S. & Bonifacino, J. S. Lysosome-related organelles. FASEB J. 14, 1265–1278 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hsing, L. C. & Rudensky, A. Y. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev. 207, 229–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, G. P. et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med. 191, 1177–1186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, C. H. et al. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol. Cell. Biol. 26, 2309–2316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manoury, B. et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity 18, 489–498 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Maehr, R. et al. Asparagine endopeptidase is not essential for class II MHC antigen presentation but is required for processing of cathepsin L in mice. J. Immunol. 174, 7066–7074 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Lagaudriere-Gesbert, C., Newmyer, S. L., Gregers, T. F., Bakke, O. & Ploegh, H. L. Uncoating ATPase Hsc70 is recruited by invariant chain and controls the size of endocytic compartments. Proc. Natl Acad. Sci. USA 99, 1515–1520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nordeng, T. W. et al. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol. Biol. Cell 13, 1846–1856 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faure-Andre, G. et al. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322, 1705–1710 (2008). This paper shows that the regulation of invariant chain degradation by cathepsin S in DCs controls both MHC class II-restricted antigen presentation and cell migration to lymph nodes.

    Article  CAS  PubMed  Google Scholar 

  10. Leng, L. et al. MIF signal transduction initiated by binding to CD74. J. Exp. Med. 197, 1467–1476 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starlets, D. et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107, 4807–4816 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Sercarz, E. E. & Maverakis, E. MHC-guided processing: binding of large antigen fragments. Nature Rev. Immunol. 3, 621–629 (2003).

    Article  CAS  Google Scholar 

  13. Watts, C., Matthews, S. P., Mazzeo, D., Manoury, B. & Moss, C. X. Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunol. Rev. 207, 218–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Manoury, B. et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunol. 3, 169–174 (2002).

    Article  CAS  Google Scholar 

  15. Moss, C. X., Villadangos, J. A. & Watts, C. Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur. J. Immunol. 35, 3442–3451 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Burster, T. et al. Cathepsin G, and not the asparagine-specific endoprotease, controls the processing of myelin basic protein in lysosomes from human B lymphocytes. J. Immunol. 172, 5495–5503 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Villadangos, J. A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nature Rev. Immunol. 7, 543–555 (2007).

    Article  CAS  Google Scholar 

  18. Lin, M. L., Zhan, Y., Villadangos, J. A. & Lew, A. M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol. 86, 353–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Shen, L., Sigal, L. J., Boes, M. & Rock, K. L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Saveanu, L. et al. IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 325, 213–217 (2009). This paper describes a 'trimming' role for IRAP in endosomal cross-presentation compartments analogous to the role of endoplasmic reticulum peptidases in the classical MHC class I presentation pathway.

    Article  CAS  PubMed  Google Scholar 

  21. Segura, E., Albiston, A. L., Wicks, I. A., Chai, S. W. & Villadangos, J. A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl Acad. Sci. USA (in the press). In this manuscript, the authors show that the IRAP-dependent mechanism of cross-presentation is predominant in inflammatory but not steady-state DCs.

  22. Accapezzato, D. et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J. Exp. Med. 202, 817–828 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Savina, A. et al. The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8+ dendritic cells. Immunity 30, 544–555 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lutz, M. B. et al. Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II-positive vesicles in immature dendritic cells. J. Immunol. 159, 3707–3716 (1997).

    CAS  PubMed  Google Scholar 

  25. van Montfoort, N. et al. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity. Proc. Natl Acad. Sci. USA 106, 6730–6735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. El-Sukkari, D. et al. The protease inhibitor cystatin C is differentially expressed among dendritic cell populations, but does not control antigen presentation. J. Immunol. 171, 5003–5011 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Pierre, P. & Mellman, I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Villadangos, J. A. et al. MHC class II expression is regulated in dendritic cells independently of invariant chain degradation. Immunity 14, 739–749 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Halfon, S. et al. Leukocystatin, a new class II cystatin expressed selectively by hematopoietic cells. J. Biol. Chem. 273, 16400–16408 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ni, J. et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem. 273, 24797–24804 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Langerholc, T. et al. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J. 272, 1535–1545 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hamilton, G., Colbert, J. D., Schuettelkopf, A. W. & Watts, C. Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis. EMBO J. 27, 499–508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  34. Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  35. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nature Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  36. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  Google Scholar 

  37. Barton, G. M. & Kagan, J. C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Rev. Immunol. 9, 535–542 (2009).

    Article  CAS  Google Scholar 

  38. Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol. 5, 190–198 (2004).

    Article  CAS  Google Scholar 

  39. Chockalingam, A., Brooks, J. C., Cameron, J. L., Blum, L. K. & Leifer, C. A. TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol. Cell Biol. 87, 209–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunol. 7, 156–164 (2006).

    Article  CAS  Google Scholar 

  41. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Fukui, R. et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J. Exp. Med. 206, 1339–1350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Matsumoto, F. et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun. 367, 693–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nature Immunol. 9, 1407–1414 (2008). References 44–46 describe a novel role for endolysosomal proteases, namely the processing of pro-forms of TLR7 and TLR9. Without this proteolytic step, TLR9 and probably also TLR7 cannot function as pathogen sensors.

    Article  CAS  Google Scholar 

  47. Asagiri, M. et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627 (2008). This was the first paper to describe a role for a cathepsin in TLR9 signalling, although the mechanism involved was not delineated.

    Article  CAS  PubMed  Google Scholar 

  48. Berriman, M. et al. The genome of the blood fluke Schistosoma mansoni. Nature 460, 352–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, F. et al. The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature 460, 345–351 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  50. Robinson, M. W., Menon, R., Donnelly, S. M., Dalton, J. P. & Ranganathan, S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol. Cell. Proteomics 8, 1891–1907 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKerrow, J. H., Caffrey, C., Kelly, B., Loke, P. & Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. 1, 497–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Que, X. & Reed, S. L. Cysteine proteinases and the pathogenesis of amebiasis. Clin. Microbiol. Rev. 13, 196–206 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexander, J., Coombs, G. H. & Mottram, J. C. Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J. Immunol. 161, 6794–6801 (1998).

    CAS  PubMed  Google Scholar 

  54. Pollock, K. G. et al. The Leishmania mexicana cysteine protease, CPB2.8, induces potent Th2 responses. J. Immunol. 170, 1746–1753 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Buxbaum, L. U. et al. Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J. Immunol. 171, 3711–3717 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Aslam, A. et al. Proteases from Schistosoma mansoni cercariae cleave IgE at solvent exposed interdomain regions. Mol. Immunol. 45, 567–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Tran, V. Q., Herdman, D. S., Torian, B. E. & Reed, S. L. The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding. J. Infect. Dis. 177, 508–511 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. von Pawel-Rammingen, U. & Bjorck, L. IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr. Opin. Microbiol. 6, 50–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wenig, K. et al. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc. Natl Acad. Sci. USA 101, 17371–17376 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vincents, B., Vindebro, R., Abrahamson, M. & von Pawel-Rammingen, U. The human protease inhibitor cystatin C is an activating cofactor for the streptococcal cysteine protease IdeS. Chem. Biol. 15, 960–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Que, X. et al. A surface amebic cysteine proteinase inactivates interleukin-18. Infect. Immun. 71, 1274–1280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cameron, P. et al. Inhibition of lipopolysaccharide-induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-κB signaling pathway. J. Immunol. 173, 3297–3304 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Z. et al. Entamoeba histolytica cysteine proteinases with interleukin-1β converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol. Microbiol. 37, 542–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Giordanengo, L. et al. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur. J. Immunol. 32, 1003–1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  66. Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunol. 9, 310–318 (2008). In this paper, the authors show that injection of papain (a model protease allergen) leads to the recruitment of basophils, which then initiate T H 2 cell responses.

    Article  CAS  Google Scholar 

  67. Perrigoue, J. G. et al. MHC class II-dependent basophil–CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nature Immunol. 10, 697–705 (2009).

    Article  CAS  Google Scholar 

  68. Sokol, C. L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nature Immunol. 10, 713–720 (2009).

    Article  CAS  Google Scholar 

  69. Yoshimoto, T. et al. Basophils contribute to TH2–IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nature Immunol. 10, 706–712 (2009).

    Article  CAS  Google Scholar 

  70. Shakib, F., Ghaemmaghami, A. M. & Sewell, H. F. The molecular basis of allergenicity. Trends Immunol. 29, 633–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Med. 15, 410–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Bjorck, L., Grubb, A. & Kjellen, L. Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J. Virol. 64, 941–943 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Collins, A. R. & Grubb, A. Inhibitory effects of recombinant human cystatin C on human coronaviruses. Antimicrob. Agents Chemother. 35, 2444–2446 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peri, P. et al. The cysteine protease inhibitors cystatins inhibit herpes simplex virus type 1-induced apoptosis and virus yield in HEp-2 cells. J. Gen. Virol. 88, 2101–2105 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Das, L., Datta, N., Bandyopadhyay, S. & Das, P. K. Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response. J. Immunol. 166, 4020–4028 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kar, S., Ukil, A. & Das, P. K. Signaling events leading to the curative effect of cystatin on experimental visceral leishmaniasis: involvement of ERK1/2, NF-κB and JAK/STAT pathways. Eur. J. Immunol. 39, 741–751 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Vray, B., Hartmann, S. & Hoebeke, J. Immunomodulatory properties of cystatins. Cell. Mol. Life Sci. 59, 1503–1512 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hartmann, S. & Lucius, R. Modulation of host immune responses by nematode cystatins. Int. J. Parasitol. 33, 1291–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Manoury, B., Gregory, W. F., Maizels, R. M. & Watts, C. Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr. Biol. 11, 447–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Schonemeyer, A. et al. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J. Immunol. 167, 3207–3215 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Hartmann, S., Kyewski, B., Sonnenburg, B. & Lucius, R. A filarial cysteine protease inhibitor down-regulates T cell proliferation and enhances interleukin-10 production. Eur. J. Immunol. 27, 2253–2260 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Bryson, K. et al. Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response. Infect. Immun. 77, 2971–2978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bolitho, P., Voskoboinik, I., Trapani, J. A. & Smyth, M. J. Apoptosis induced by the lymphocyte effector molecule perforin. Curr. Opin. Immunol. 19, 339–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Pardo, J. et al. The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect. 11, 452–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Hirst, C. E. et al. Perforin-independent expression of granzyme B and proteinase inhibitor 9 in human testis and placenta suggests a role for granzyme B-mediated proteolysis in reproduction. Mol. Hum. Reprod. 7, 1133–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Pardo, J. et al. Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ. 14, 1768–1779 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Smyth, M. J. & Trapani, J. A. Granzymes: exogenous porteinases that induce target cell apoptosis. Immunol. Today 16, 202–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Stinchcombe, J. C. & Griffiths, G. M. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell Dev. Biol. 23, 495–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Dressel, R. et al. Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J. Biol. Chem. 279, 20200–20210 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Trapani, J. A. et al. A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J. Cell Biol. 160, 223–233 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bird, C. H. et al. Cationic sites on granzyme B contribute to cytotoxicity by promoting its uptake into target cells. Mol. Cell. Biol. 25, 7854–7867 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  PubMed  Google Scholar 

  94. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baran, K. et al. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30, 684–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Voskoboinik, I. et al. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: a critical role for aspartate residues 429, 435, 483, and 485 but not 491. J. Biol. Chem. 280, 8426–8434 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barry, M. et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell. Biol. 20, 3781–3794 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaiserman, D. et al. The major human and mouse granzymes are structurally and functionally divergent. J. Cell Biol. 175, 619–630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cullen, S. P., Adrain, C., Luthi, A. U., Duriez, P. J. & Martin, S. J. Human and murine granzyme B exhibit divergent substrate preferences. J. Cell Biol. 176, 435–444 (2007). References 100 and 101 show that orthologous mouse and human granzymes have different substrate specificities, which underpin distinct biological activities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pardo, J. et al. Granzyme B-induced cell death exerted by ex vivo CTL: discriminating requirements for cell death and some of its signs. Cell Death Differ. 15, 567–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Sedelies, K. A. et al. Blocking granule-mediated death by primary human NK cells requires both protection of mitochondria and inhibition of caspase activity. Cell Death Differ. 15, 708–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Thia, K. Y. T. & Trapani, J. A. The granzyme B gene is highly polymorphic in wild mice but essentially invariant in common inbred laboratory strains. Tissue Antigens 70, 198–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Beresford, P. J., Xia, Z., Greenberg, A. H. & Lieberman, J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10, 585–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Kelly, J. M. et al. Granzyme M mediates a novel form of perforin-dependent cell death. J. Biol. Chem. 279, 22236–22242 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Fellows, E., Gil-Parrado, S., Jenne, D. E. & Kurschus, F. C. Natural killer cell-derived human granzyme H induces an alternative, caspase-independent cell-death program. Blood 110, 544–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Zhao, T., Zhang, H., Guo, Y. & Fan, Z. Granzyme K directly processes Bid to release cytochrome c and endonuclease G leading to mitochondria-dependent cell death. J. Biol. Chem. 282, 12104–12111 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Regner, M. et al. Cutting edge: Rapid and efficient in vivo cytotoxicity by cytotoxic T cells is independent of granzymes A and B. J. Immunol. 183, 37–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Ebnet, K. et al. Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buzza, M. S. & Bird, P. I. Extracellular granzymes: current perspectives. Biol. Chem. 387, 827–837 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Andrade, F., Fellows, E., Jenne, D. E., Rosen, A. & Young, C. S. Granzyme H destroys the function of critical adenoviral proteins required for viral DNA replication and granzyme B inhibition. EMBO J. 26, 2148–2157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Buzza, M. S. et al. Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J. Biol. Chem. 280, 23549–23558 (2005). This report indicates that granzyme B might have functions other than cytotoxicity.

    Article  CAS  PubMed  Google Scholar 

  114. Metkar, S. S. et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29, 720–733 (2008). This report suggests that granzyme A is non-cytotoxic and that its true role is in immune signalling.

    Article  CAS  PubMed  Google Scholar 

  115. Terman, A., Kurz, T., Gustafsson, B. & Brunk, U. T. Lysosomal labilization. IUBMB Life 9, 531–539 (2006).

    Article  CAS  Google Scholar 

  116. de Duve, C. in Subcellular Particles (ed. Hayashi, T.) 128–159 (The Ronald Press Co., New York, 1959).

    Google Scholar 

  117. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Stoka, V., Turk, B. & Turk, V. Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB Life 57, 347–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Conus, S. & Simon, H. U. Cathepsins: key modulators of cell death and inflammatory responses. Biochem. Pharmacol. 76, 1374–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Conus, S. et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J. Exp. Med. 205, 685–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou, Q. & Salvesen, G. S. Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem. J. 324, 361–364 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Biggs, J. R. et al. The human brm protein is cleaved during apoptosis: the role of cathepsin G. Proc. Natl Acad. Sci. USA 98, 3814–3819 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Werneburg, N. W., Guicciardi, M. E., Bronk, S. F. & Gores, G. J. Tumor necrosis factor-α-associated lysosomal permeabilization is cathepsin B dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G947–G956 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 999–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van Nierop, K. et al. Lysosomal destabilization contributes to apoptosis of germinal center B-lymphocytes. J. Histochem. Cytochem. 54, 1425–1435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Michallet, M.-C., Saltel, F., Flacher, M., Revillard, J.-P. & Genestier, L. Cathepsin-dependent apoptosis triggered by supraoptimal activation of T lymphocytes: a possible mechanism of high dose tolerance. J. Immunol. 172, 5405–5414 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Tran, T. M. et al. TNFα-induced macrophage death via caspase-dependent and independent pathways. Apoptosis 14, 320–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ida, H. et al. Granzyme B leakage-induced cell death: a new type of activation-induced natural killer cell death. Eur. J. Immunol. 33, 3284–3292 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Laforge, M. et al. Apoptotic death concurrent with CD3 stimulation in primary human CD8+ T lymphocytes: a role for endogenous granzyme B. J. Immunol. 176, 3966–3977 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Devadas, S. et al. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 25, 237–247 (2006). References 128–130 are the first indications of a role for granzyme B in lymphocyte homeostasis.

    Article  CAS  PubMed  Google Scholar 

  131. Kopitar-Jerala, N. The role of cystatins in cells of the immune system. FEBS Lett. 580, 6295–6301 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Houseweart, M. K. et al. Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J. Neurobiol. 56, 315–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Mangan, M. S. J., Kaiserman, D. & Bird, P. I. The role of serpins in vertebrate immunity. Tissue Antigens 72, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Sun, J. et al. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J. Biol. Chem. 271, 27802–27809 (1996). The first report of an endogenous granzyme B inhibitor, serpin B9.

    Article  CAS  PubMed  Google Scholar 

  135. Hirst, C. E. et al. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol. 170, 805–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, M. et al. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24, 451–461 (2006). The first description of cytotoxic T cell dysfunction in mice lacking the granzyme B inhibitor serpin B9.

    Article  CAS  PubMed  Google Scholar 

  137. Liu, N. et al. NF-κB protects from the lysosomal pathway of cell death. EMBO J. 22, 5313–5322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu, N., Wang, Y. & Ashton-Rickardt, P. G. Serine protease inhibitor 2A inhibits caspase-independent cell death. FEBS Lett. 569, 49–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, N. et al. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nature Immunol. 5, 919–926 (2004).

    Article  CAS  Google Scholar 

  140. Mason, R. W. Emerging functions of placental cathepsins. Placenta 29, 385–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Kaiserman, D. et al. Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded Ov-Serpin gene repertoire in the mouse. Genomics 79, 349–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Mihelic, M., Teuscher, C., Turk, V. & Turk, D. Mouse stefins A1 and A2 (Stfa1 and Stfa2) differentiate between papain-like endo- and exopeptidases. FEBS Lett. 580, 4195–4199 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Fear, G., Komarnytsky, S. & Raskin, I. Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol. Ther. 113, 354–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Obermajer, N., Jevnikar, Z., Doljak, B. & Kos, J. Role of cysteine cathepsins in matrix degradation and cell signalling. Connect. Tissue Res. 49, 193 –196 (2008).

  145. Friedrichs, B. et al. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 111, 1733–1745 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Goulet, B. et al. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol. Cell 14, 207–219 (2004). An unexpected finding that papain-like cathepsins can function in the nucleocytoplasm.

    Article  CAS  PubMed  Google Scholar 

  147. Sinclair, A. M. et al. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 98, 3658–3667 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Sansregret, L. & Nepveu, A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene 412, 84–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Reinheckel, T., Deussing, J., Roth, W. & Peters, C. Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem. 382, 735–741 (2001).

    CAS  PubMed  Google Scholar 

  150. Duncan, E. M. et al. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135, 284–294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Health and Medical Reseach Council, Australia. J.A.V. is a Leukemia and Lymphoma Society scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phillip I. Bird or José A. Villadangos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

MEROPS peptidase database

Glossary

Toll-like receptors

(TLRs). A family of membrane-spanning proteins that recognize pathogen-associated molecular patterns that are shared by various microorganisms. Signalling through TLRs generally results in immune activation.

Chagas' disease

A disease that is caused by infection with the tropical parasite Trypanosoma cruzi, which is transmitted through the skin by the faeces of blood-feeding triatomine bugs. In chronic cases, Chagas' disease is associated with autoimmune damage to various organs and potentially fatal cardiac and neural damage.

C-type lectin receptors

A large family of receptors that bind glycosylated ligands and have multiple functions, such as cell adhesion, endocytosis, target recognition by natural killer cells and dendritic cell activation, as well as antigen capture and presentation.

Intrinsic apoptotic pathway

A cell death pathway that is triggered by stressors such as growth factor deprivation, cytotoxic drugs and radiation. By contrast, the extrinsic apoptotic pathway is triggered by death receptor signalling.

Anoikis

The apoptosis of anchorage-dependent cells following detachment from their supporting extracellular matrix.

Activation-induced cell death

A process by which fully activated T cells undergo programmed cell death following binding of the T cell receptor by antigen or mitogen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, P., Trapani, J. & Villadangos, J. Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9, 871–882 (2009). https://doi.org/10.1038/nri2671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing