Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy

Key Points

  • The BCL-2 protein family principally determines whether a cell commits to apoptosis and hence has crucial roles in development, tissue homeostasis and immunity. Consequently, alteration of this control can either promote cancer and autoimmune diseases (too little apoptosis) or augment ischaemic conditions and contribute to degenerative disorders (too much apoptosis).

  • The life-or-death decision for a cell is mainly determined by the interactions between three factions of the BCL-2 family: namely, the pro-survival subfamily (for example, BCL-2, BCL-XL and MCL1) and two pro-apoptotic factions, the BH3-only proteins (for example, BIM, PUMA and BID), which convey various cytotoxic signals, and the death effectors BAX and BAK, which can convert into homo-oligomers that perforate the mitochondrial outer membrane, triggering the proteolytic cascade that demolishes the cell.

  • Biochemical and structural studies have shown that the cardinal interaction within the family is the engagement of a groove on the surface of the pro-survival family members, and of BAX and BAK, by the BH3 domain of a pro-apoptotic family member.

  • Insights have recently emerged into how BAX and BAK convert from inert globular monomers into the lethal oligomers that permeabilize the mitochondrial outer membrane. They can be activated by the binding of certain BH3 domains (particularly those of BIM and BID) to their canonical surface groove, and possibly also to a less defined rear site on BAX. The groove binding provokes BAX and BAK to undergo remarkable structural rearrangements that include release of their own BH3 domain, which can then engage the surface groove of another BAX or BAK molecule to form the 'symmetric dimers' that nucleate the larger oligomers.

  • Collectively, the manipulation of BCL-2 family genes in mice indicates that all mammalian cells are poised to commit suicide unless protected by one or more of the pro-survival family members; that nearly all cytotoxic signals, including those used in chemotherapy, are mediated through the activation of one or more BH3-only proteins; and that the activation of either BAX or BAK is necessary and sufficient for mitochondrial pathway apoptosis.

  • Novel anticancer drugs, termed 'BH3 mimetics', which engage the groove of certain pro-survival family members in a manner that is similar to that of the BH3-only proteins, have shown promise in preclinical studies and early clinical trials, particularly in patients with lymphoid malignancies, such as chronic lymphocytic leukaemia. The best characterized are navitoclax (ABT-263), which targets BCL-2, BCL-XL and BCL-W, and the new BCL-2-specific ABT-199. Their combination with other anticancer agents is likely to extend their efficacy to a wider range of malignancies.

Abstract

The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mitochondrial and death receptor-mediated pathways to apoptosis.
Figure 2: The structure of BCL-2 family proteins and the selectivity in their interactions.
Figure 3: Direct activation of BAX by BH3-only proteins.
Figure 4: Model for the activation and oligomerization of BAX and BAK.
Figure 5: BH3 mimetics binding to the hydrophobic groove of their pro-survival BCL-2 family target proteins.

Similar content being viewed by others

References

  1. Golstein, P. Cell death in us and others. Science 281, 1283 (1998).

    CAS  PubMed  Google Scholar 

  2. Claveria, C., Giovinazzo, G., Sierra, R. & Torres, M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500, 39–44 (2013).

    CAS  PubMed  Google Scholar 

  3. Vaux, D. L., Haecker, G. & Strasser, A. An evolutionary perspective on apoptosis. Cell 76, 777–779 (1994).

    CAS  PubMed  Google Scholar 

  4. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    CAS  PubMed  Google Scholar 

  6. Hotchkiss, R. S., Strasser, A., McDunn, J. E. & Swanson, P. E. Cell death. New Engl. J. Med. 361, 1570–1583 (2009).

    CAS  PubMed  Google Scholar 

  7. Yuan, J. & Kroemer, G. Alternative cell death mechanisms in development and beyond. Gene. Dev. 24, 2592–2602 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).

    CAS  PubMed  Google Scholar 

  9. Vaux, D. L., Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988). The pro-survival function of BCL-2 was discovered through the finding that its overexpression prevented the death of haematopoietic cells deprived of cytokine.

    CAS  PubMed  Google Scholar 

  10. McDonnell, T. J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989). This study provided the first physiological evidence that BCL-2 can control tissue homeostasis by maintaining lymphocyte survival.

    CAS  PubMed  Google Scholar 

  11. Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad. Sci. USA 88, 8661–8665 (1991). This study provided the first evidence that increased lymphocyte survival elicited by changes in regulation of the BCL-2 family could contribute to autoimmune disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Strasser, A., Harris, A. W. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).

    CAS  PubMed  Google Scholar 

  13. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    CAS  PubMed  Google Scholar 

  14. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    CAS  PubMed  Google Scholar 

  15. Hengartner, M. O. & Horvitz, H. R. C.elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    CAS  PubMed  Google Scholar 

  16. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    CAS  PubMed  Google Scholar 

  17. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of Caspase-3. Cell 90, 405–413 (1997).

    CAS  PubMed  Google Scholar 

  18. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  19. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria — a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    CAS  PubMed  Google Scholar 

  20. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    CAS  PubMed  Google Scholar 

  21. Strasser, A., Jost, P. J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Riedl, S. J. & Salvesen, G. S. The apoptosome: signalling platform of cell death. Nature Rev. Mol. Cell Biol. 8, 405–413 (2007).

    CAS  Google Scholar 

  23. Tait, S. W. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Rev. Mol. Cell Biol. 11, 621–632 (2010).

    CAS  Google Scholar 

  24. Strasser, A., Cory, S. & Adams, J. M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 30, 3667–3683 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Rev. Cancer 8, 121–132 (2008).

    CAS  Google Scholar 

  26. Martinou, J. C. & Youle, R. J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92–101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine, B., Sinha, S. & Kroemer, G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600–606 (2008).

    CAS  PubMed  Google Scholar 

  29. Perciavalle, R. M. & Opferman, J. T. Delving deeper: MCL-1's contributions to normal and cancer biology. Trends Cell Biol. 23, 22–29 (2013).

    CAS  PubMed  Google Scholar 

  30. Kvansakul, M. et al. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ. 15, 1564–1571 (2008).

    CAS  PubMed  Google Scholar 

  31. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    CAS  PubMed  Google Scholar 

  32. Hinds, M. G. et al. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ. 14, 128–136 (2007).

    CAS  PubMed  Google Scholar 

  33. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    CAS  PubMed  Google Scholar 

  34. Kaufmann, T. et al. The BH3-only protein Bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129, 423–433 (2007).

    CAS  PubMed  Google Scholar 

  35. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624 (1999).

    CAS  PubMed  Google Scholar 

  37. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634 (1999).

    CAS  PubMed  Google Scholar 

  38. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell 17, 525–535 (2005).

    CAS  PubMed  Google Scholar 

  40. Merino, D. et al. The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J. Cell Biol. 186, 355–362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Llambi, F. et al. A Unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, L. et al. Differential targeting of pro-survival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005). Quantitative data revealed selectivity in the binding of BH3 domains to pro-survival BCL-2 family proteins and showed that efficient apoptosis requires the engagement of most of the expressed pro-survival proteins (see also reference 39).

    CAS  PubMed  Google Scholar 

  43. Willis, S. N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007). This study showed that effective induction of apoptosis requires that BH3-only proteins bind and neutralize all of the pro-survival BCL-2 family members expressed in a cell.

    CAS  PubMed  Google Scholar 

  44. Willis, S. N. et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Gene. Dev. 19, 1294–1305 (2005). This study showed that activation of BAK is restrained predominantly by MCL1 and BCL-X L.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006). This study introduced the concept that cells with increased levels of BCL-2 are still sensitive to BCL-2 inhibition if they have been 'primed' by stress signals that have increased the level of a bound activator BH3-only protein such as BIM.

    CAS  PubMed  Google Scholar 

  46. Kim, H. et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nature Cell Biol. 8, 1348–1358 (2006).

    CAS  PubMed  Google Scholar 

  47. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002). This work, using BH3 peptides, introduced the hypothesis that BH3 domains are of two classes: those that can directly activate BAX and those that can only sensitize cells to apoptosis by engaging the pro-survival family members.

    CAS  PubMed  Google Scholar 

  48. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997). Building on the structure of BCL-X L (shown in reference 31), this study showed that a BAK BH3 peptide binds in the surface groove of BCL-X L , revealing a principal mode of regulation of apoptosis by this family.

    CAS  PubMed  Google Scholar 

  50. Liu, X., Dai, S., Zhu, Y., Marrack, P. & Kappler, J. W. The structure of a Bcl-xL/Bim fragment complex: Implications for Bim function. Immunity 19, 341–352 (2003).

    CAS  PubMed  Google Scholar 

  51. Czabotar, P. E. et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad. Sci. USA 104, 6217–6222 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, E. F. et al. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J. Cell Biol. 180, 341–355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, T. S., Palacios, H. & Keating, A. E. Structure-based redesign of the binding specificity of anti-apoptotic Bcl-xL . J. Mol. Biol. 425, 171–185 (2013).

    CAS  PubMed  Google Scholar 

  54. Lee, E. F. et al. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. J. Biol. Chem. 284, 30508–30517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Smits, C., Czabotar, P. E., Hinds, M. G. & Day, C. L. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure 16, 818–829 (2008).

    CAS  PubMed  Google Scholar 

  56. Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993).

    CAS  PubMed  Google Scholar 

  57. Wang, K., Gross, A., Waksman, G. & Korsmeyer, S. J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Cell. Biol. 18, 6083–6089 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fletcher, J. I. et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad. Sci. USA 105, 18081–18087 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Simmons, M. J. et al. Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene 27, 1421–1428 (2008).

    CAS  PubMed  Google Scholar 

  60. Czabotar, P. E. et al. Mutations to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J. Biol. Chem. 286, 7123–7131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ku, B., Liang, C., Jung, J. U. & Oh, B. H. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 21, 627–641 (2011).

    CAS  PubMed  Google Scholar 

  62. Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36, 487–499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Griffiths, G. J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903–914 (1999).

    CAS  Google Scholar 

  64. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    CAS  PubMed  Google Scholar 

  65. Edlich, F. et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schellenberg, B. et al. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol. Cell 49, 959–971 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Czabotar, P. E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013). Structural analysis showed that BAX activation requires binding of certain BH3 domains into its surface groove. It identified the residues distinguishing such BAX activators, demonstrated that BAX then unfolds into two segments and revealed that the core segment forms a BH3-in-groove symmetric dimer, which is thought to be the central element in the lethal BAX oligomers.

    CAS  PubMed  Google Scholar 

  68. Gavathiotis, E., Reyna, D. E., Davis, M. L., Bird, G. H. & Walensky, L. D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Leshchiner, E. S., Braun, C. R., Bird, G. H. & Walensky, L. D. Direct activation of full-length proapoptotic BAK. Proc Natl Acad. Sci. USA 110, E986–E995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Okamoto, T. et al. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol. 8, 297–302 (2013).

    CAS  PubMed  Google Scholar 

  71. Peng, R. et al. Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death Differ. 20, 744–754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Moldoveanu, T. et al. The x-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol. Cell 24, 677–688 (2006).

    CAS  PubMed  Google Scholar 

  73. Dai, H. et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J. Cell Biol. 194, 39–48 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Moldoveanu, T. et al. BID-induced structural changes in BAK promote apoptosis. Nature Struct. Mol. Biol. 20, 589–597 (2013). A BID BH3 peptide is shown to bind into the groove of BAK and elicit rearrangements similar to those in BAX (see reference 67).

    CAS  Google Scholar 

  75. Hsu, Y. T. & Youle, R. J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997).

    CAS  PubMed  Google Scholar 

  76. Dewson, G. et al. To trigger apoptosis Bak exposes its BH3 domain and homo-dimerizes via BH3:grooove interactions. Mol. Cell 30, 369–380 (2008). Crosslinking studies showed that, to form oligomers, two activated BAK monomers first expose their BH3 domain and then bury it in the other monomer's surface groove, creating novel symmetric dimers, as later confirmed by structural studies on BAX (see reference 67).

    CAS  PubMed  Google Scholar 

  77. Dewson, G. et al. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ. 19, 661–670 (2012).

    CAS  PubMed  Google Scholar 

  78. Weber, K., Harper, N., Schwabe, J. & Cohen, G. M. BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis. Cell Rep. 5, 409–420 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. George, N. M., Evans, J. J. & Luo, X. A three-helix homo-oligomerization domain containing BH3 and BH1 is responsible for the apoptotic activity of Bax. Gene. Dev. 21, 1937–1948 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dewson, G. et al. Bak activation for apoptosis involves oligomerization of dimers via their α6 helices. Mol. Cell 36, 696–703 (2009).

    CAS  PubMed  Google Scholar 

  81. Bleicken, S. et al. Molecular details of Bax activation, oligomerization, and membrane insertion. J. Biol. Chem. 285, 6636–6647 (2010).

    CAS  PubMed  Google Scholar 

  82. Zhang, Z. et al. Bax forms an oligomer via separate, yet interdependent, surfaces. J. Biol. Chem. 285, 17614–17627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh, K. J. et al. Conformational changes in BAK, a pore-forming proapoptotic Bcl-2 family member, upon membrane insertion and direct evidence for the existence of BH3-BH3 contact interface in BAK homo-oligomers. J. Biol. Chem. 285, 28924–28937 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bogner, C., Leber, B. & Andrews, D. W. Apoptosis: embedded in membranes. Curr. Opin. Cell. Biol. 22, 845–851 (2010).

    CAS  PubMed  Google Scholar 

  85. Pang, Y. P. et al. Bak conformational changes induced by ligand binding: insight into BH3 domain binding and Bak homo-oligomerization. Sci. Rep. 2, 257 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. Westphal, D., Dewson, G., Czabotar, P. E. & Kluck, R. M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521–531 (2011).

    CAS  PubMed  Google Scholar 

  87. Annis, M. G. et al. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 24, 2096–2103 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bleicken, S., Wagner, C. & Garcia-Saez, A. J. Mechanistic differences in the membrane activity of Bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys. J. 104, 421–431 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bleicken, S., Landeta, O., Landajuela, A., Basanez, G. & Garcia-Saez, A. J. Proapoptotic Bax and Bak form stable protein-permeable pores of tunable size. J. Biol. Chem., 288, 33241–33252 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Green, D. R. & Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature 458, 1127–1130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Michalak, E. M., Villunger, A., Adams, J. M. & Strasser, A. In several cell types the tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 15, 1019–1029 (2008).

    CAS  PubMed  Google Scholar 

  92. Chang, N. C., Nguyen, M., Germain, M. & Shore, G. C. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 29, 606–618 (2010).

    CAS  PubMed  Google Scholar 

  93. Kutuk, O. & Letai, A. Regulation of Bcl-2 family proteins by posttranslational modifications. Curr. Mol. Med. 8, 102–118 (2008).

    CAS  PubMed  Google Scholar 

  94. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dai, H. et al. Contribution of Bcl-2 phosphorylation to Bak binding and drug resistance. Cancer Res. 73, 6998–7008 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Thomas, L. W., Lam, C. & Edwards, S. W. Mcl-1; the molecular regulation of protein function. FEBS Lett. 584, 2981–2989 (2010).

    CAS  PubMed  Google Scholar 

  97. Schwickart, M. et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  98. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011).

    CAS  PubMed  Google Scholar 

  99. Perciavalle, R. M. et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nature Cell Biol. 14, 575–583 (2012).

    CAS  PubMed  Google Scholar 

  100. Elkholi, R., Floros, K. V. & Chipuk, J. E. The role of BH3-only proteins in tumor cell development, signaling, and treatment. Genes Cancer 2, 523–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Herold, M. J. et al. Foxo-mediated Bim transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3-only protein. EMBO Rep. 14, 992–998 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Clybouw, C. et al. Alternative splicing of Bim and Erk-mediated Bim(EL) phosphorylation are dispensable for hematopoietic homeostasis in vivo. Cell Death Differ. 19, 1060–1068 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Campbell, K. J. et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 116, 3197–3207 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    CAS  PubMed  Google Scholar 

  105. Bouillet, P., Cory, S., Zhang, L.-C., Strasser, A. & Adams, J. M. Degenerative disorders caused by Bcl-2 deficiency are prevented by loss of its BH3-only antagonist Bim. Dev. Cell 1, 645–653 (2001).

    CAS  PubMed  Google Scholar 

  106. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science 267, 1506–1510 (1995).

    CAS  PubMed  Google Scholar 

  107. Rucker, E. B. et al. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol. 14, 1038–1052 (2000).

    CAS  PubMed  Google Scholar 

  108. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    CAS  PubMed  Google Scholar 

  109. Takehara, T. et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 127, 1189–1197 (2004).

    CAS  PubMed  Google Scholar 

  110. Akhtar, R. S., Klocke, B. J., Strasser, A. & Roth, K. A. Loss of BH3-only protein Bim inhibits apoptosis of hemopoietic cells in the fetal liver and male germ cells but not neuronal cells in bcl-x-deficient mice. J. Histochem. Cytochem. 56, 921–927 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Print, C. G. et al. Apoptosis regulator Bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad. Sci. USA 95, 12424–12431 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ross, A. J. et al. Testicular degeneration in Bclw-deficient mice. Nature Genet. 18, 251–256 (1998).

    CAS  PubMed  Google Scholar 

  113. Ross, A. J. et al. BCLW mediates survival of postmitotic Sertoli cells by regulating BAX activity. Dev. Biol. 239, 295–308 (2001).

    CAS  PubMed  Google Scholar 

  114. Rinkenberger, J. L., Horning, S., Klocke, B., Roth, K. & Korsmeyer, S. J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Gene. Dev. 14, 23–27 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Opferman, J. et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307, 1101–1104 (2005).

    CAS  PubMed  Google Scholar 

  116. Opferman, J. T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    CAS  PubMed  Google Scholar 

  117. Vikstrom, I. et al. Mcl-1 is essential for germinal center formation and B cell memory. Science 330, 1095–1099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Peperzak, V. et al. Mcl-1 is essential for the survival of plasma cells. Nature Immunol. 14, 290–297 (2013).

    CAS  Google Scholar 

  119. Wang, X. et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Gene. Dev. 27, 1351–1364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomas, R. L. et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Gene. Dev. 27, 1365–1377 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hamasaki, A. et al. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J. Exp. Med. 188, 1985–1992 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ottina, E. et al. Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood 119, 6032–6042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rautureau, G. J., Day, C. L. & Hinds, M. G. The structure of Boo/Diva reveals a divergent Bcl-2 protein. Proteins 78, 2181–2186 (2010).

    CAS  PubMed  Google Scholar 

  124. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    CAS  Google Scholar 

  125. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999). The BH3-only protein BIM was shown to be essential for specific cytotoxic responses and to maintain lymphoid homeostasis, thereby preventing autoimmunity.

    CAS  PubMed  Google Scholar 

  126. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    CAS  PubMed  Google Scholar 

  127. Enders, A. et al. Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreative B cells. J. Exp. Med. 198, 1119–1126 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fischer, S. F. et al. Pro-apoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody forming cells. Blood 110, 3978–3984 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hildeman, D. A. et al. Activated T cell death in vivo mediated by pro-apoptotic Bcl-2 family member, Bim. Immunity 16, 759–767 (2002).

    CAS  PubMed  Google Scholar 

  130. Pellegrini, M., Belz, G., Bouillet, P. & Strasser, A. Shut down of an acute T cell immune response to viral infection is mediated by the pro-apoptotic Bcl-2 homology 3-only protein Bim. Proc. Natl Acad. Sci. USA 100, 14175–14180 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hughes, P. D. et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 28, 197–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaufmann, T. et al. Fatal hepatitis mediated by tumor necrosis factor TNFα requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30, 56–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  134. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  135. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003). The BH3-only proteins PUMA and to a lesser extent NOXA, which are induced by the tumour suppressor protein p53, were shown to be crucial mediators of the apoptosis elicited by genotoxic damage and certain drugs.

    CAS  PubMed  Google Scholar 

  136. Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321–328 (2003).

    CAS  PubMed  Google Scholar 

  137. Shibue, T. et al. Integral role of Noxa in p53-mediated apoptotic response. Gene. Dev. 17, 2233–2238 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Naik, E., Michalak, E. M., Villunger, A., Adams, J. M. & Strasser, A. UV-radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J. Cell Biol. 176, 415–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kerr, J. B. et al. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol. Cell 48, 343–352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Erlacher, M. et al. BH3-only proteins Puma and Bim are rate-limiting for γ -radiation and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106, 4131–4138 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Labi, V. et al. Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates gamma irradiation-induced thymic lymphoma development. J. Exp. Med. 205, 641–655 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Coultas, L. et al. Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol. Cell. Biol. 24, 1570–1581 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Coultas, L. et al. Concomitant loss of proapoptotic BH3-only Bcl-2 antagonists Bik and Bim arrests spermatogenesis. EMBO J. 24, 3963–3973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ranger, A. M. et al. Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad. Sci. USA 100, 9324–9329 (2003).

    PubMed  PubMed Central  Google Scholar 

  145. Kelly, P. N. et al. Individual and overlapping roles of BH3-only proteins Bim and Bad in apoptosis of lymphocytes and platelets and in suppression of thymic lymphoma development. Cell Death Differ. 17, 1655–1664 (2010).

    CAS  PubMed  Google Scholar 

  146. Baumgartner, F. et al. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf. Oncogene 32, 621–630 (2013).

    CAS  PubMed  Google Scholar 

  147. Imaizumi, K. et al. Critical role for DP5/Harakiri, a Bcl-2 homology domain 3-only Bcl-2 family member, in axotomy-induced neuronal cell death. J. Neurosci. 24, 3721–3725 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Coultas, L. et al. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. J. Cell Sci. 120, 2044–2052 (2007).

    CAS  PubMed  Google Scholar 

  149. Erlacher, M. et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J. Exp. Med. 203, 2939–2951 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000). Genetic evidence that the combined absence of BAX and BAK effectively ablated intrinsic apoptosis in mice showed that they are the crucial but mutually redundant effectors of this pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mason, K. D. et al. Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease. Proc. Natl Acad. Sci. USA 110, 2599–2604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Gene. Dev. 15, 1481–1486 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001). Together with the physiological results showing that apoptosis requires BAX or BAK (see reference 151), this study and reference 153 showed that BH3-only proteins must function upstream of and through BAX and BAK.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ke, F. et al. BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ. 19, 915–925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ke, F. et al. Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis. 4, e650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349, 254–256 (1991).

    CAS  PubMed  Google Scholar 

  158. Strasser, A., Harris, A. W. & Cory, S. Eμ-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8, 1–9 (1993).

    CAS  PubMed  Google Scholar 

  159. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990). Extending the in vitro analysis in reference 9, the demonstration that BCL-2 accelerated MYC-driven tumour development provided the first direct evidence in vivo that BCL-2 overexpression is tumorigenic.

    CAS  PubMed  Google Scholar 

  160. Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad. Sci. USA 101, 6164–6169 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Garrison, S. P. et al. Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol. Cell. Biol. 28, 5391–5402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Michalak, E. M. et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 16, 684–696 (2009).

    CAS  PubMed  Google Scholar 

  163. Frenzel, A. et al. Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood 115, 995–1005 (2010).

    CAS  PubMed  Google Scholar 

  164. Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol. Cell. Biol. 21, 7653–7662 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    CAS  PubMed  Google Scholar 

  166. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Tagawa, H. et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24, 1348–1358 (2005).

    CAS  PubMed  Google Scholar 

  168. Zantl, N. et al. Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 26, 7038–7048 (2007).

    CAS  PubMed  Google Scholar 

  169. Goodnow, C. C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).

    CAS  PubMed  Google Scholar 

  170. Rathmell, J. C., Lindsten, T., Zong, W.-X., Cinalli, R. M. & Thompson, C. B. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nature Immunol. 3, 932–939 (2002).

    CAS  Google Scholar 

  171. Happo, L. et al. Maximal killing of lymphoma cells by DNA-damage inducing therapy requires not only the p53 targets Puma and Noxa but also Bim. Blood 116, 5256–5267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Bachmann, P. S. et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 116, 3013–3022 (2010).

    CAS  PubMed  Google Scholar 

  173. Tan, T. T. et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7, 227–238 (2005).

    CAS  PubMed  Google Scholar 

  174. Kuroda, J. et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad. Sci. USA 103, 14907–14912 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Cragg, M. S., Kuroda, J., Puthalakath, H., Huang, D. C. S. & Strasser, A. Gefitinib-induced killing of NSCLC cell cines expressing mutant EGFR requires Bim and can be enhanced by BH3 mimetics. PLoS Med. 4, 1681–1689 (2007).

    CAS  PubMed  Google Scholar 

  176. Costa, D. B. et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 4, e315 (2007).

    PubMed Central  Google Scholar 

  177. Cragg, M. S., Jansen, E. S., Cook, M., Strasser, A. & Scott, C. L. Treatment of B-RAF mutant human tumor cells with a MEK inhibitor requires Bim and is enhanced by a BH3 mimetic J. Clin. Invest. 118, 3651–3659 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nature Med. 18, 521–528 (2012).

    CAS  PubMed  Google Scholar 

  179. Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Merino, D. et al. Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119, 5807–5816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Chonghaile, T. N. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

    CAS  PubMed Central  Google Scholar 

  182. Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lessene, G., Czabotar, P. E. & Colman, P. M. BCL-2 family antagonists for cancer therapy. Nature Rev. Drug Discov. 7, 989–1000 (2008).

    CAS  Google Scholar 

  185. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). The development of ABT-737 provided the first compelling evidence that BH3 mimetic therapy for cancer was likely to become a reality.

    CAS  PubMed  Google Scholar 

  186. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008). The orally bioavailable derivative of ABT-737, ABT-263 (now called navitoclax), has shown promise in early clinical trials.

    CAS  PubMed  Google Scholar 

  187. Roberts, A. W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 30, 488–496 (2012).

    CAS  PubMed  Google Scholar 

  188. Mason, K. D. et al. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proc Natl Acad. Sci. USA 105, 17961–17966 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Tan, N. et al. Navitoclax enhances the efficacy of taxanes in non-small cell lung cancer models. Clin. Cancer Res. 17, 1394–1404 (2011).

    CAS  PubMed  Google Scholar 

  190. Cragg, M. S., Harris, C., Strasser, A. & Scott, C. L. Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nature Rev. Cancer 9, 321–326 (2009).

    CAS  Google Scholar 

  191. Gores, G. J. & Kaufmann, S. H. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Gene. Dev. 26, 305–311 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Med. 19, 202–208 (2013). Preclinical studies and early results from the first clinical trial indicate that ABT-199, the first potent and highly selective BCL-2 antagonist, has considerable promise, particularly for the therapy of lymphoid malignancies.

    CAS  PubMed  Google Scholar 

  193. Vandenberg, C. J. & Cory, S. ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121, 2285–2288 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Vaillant, F. et al. Targeting BCL-2 with the BH3 Mimetic ABT-199 in estrogen eeceptor-positive breast cancer. Cancer Cell 24, 120–129 (2013).

    CAS  PubMed  Google Scholar 

  195. Lessene, G. et al. Structure-guided design of a selective BCL-XL inhibitor. Nature Chem. Biol. 9, 390–397 (2013).

    CAS  Google Scholar 

  196. Friberg, A. et al. Discovery of potent myeloid cell leukemia 1 (mcl-1) inhibitors using fragment-based methods and structure-based design. J. Med. Chem. 56, 15–30 (2013).

    CAS  PubMed  Google Scholar 

  197. Placzek, W. J. et al. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis. 1, e40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Glaser, S. et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Gene. Dev. 26, 120–125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Boisvert-Adamo, K., Longmate, W., Abel, E. V. & Aplin, A. E. Mcl-1 is required for melanoma cell resistance to anoikis. Mol. Cancer Res. 7, 549–556 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Boersma, M. D. et al. Evaluation of diverse α/β-backbone patterns for functional α-helix mimicry: analogues of the Bim BH3 domain. J. Am. Chem. Soc. 134, 315–323 (2012).

    CAS  PubMed  Google Scholar 

  201. LaBelle, J. L. et al. A stapled BIM BH3 helix overcomes the apoptotic resistance of refractory hematologic cancers. J. Clin. Invest. 122, 2018–2031 (2013).

    Google Scholar 

  202. Stewart, M. L., Fire, E., Keating, A. E. & Walensky, L. D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nature Chem. Biol. 6, 595–601 (2010).

    CAS  Google Scholar 

  203. Bardwell, P. D. et al. The Bcl-2 family antagonist ABT-737 significantly inhibits multiple animal models of autoimmunity. J. Immunol. 182, 7482–7489 (2009).

    CAS  PubMed  Google Scholar 

  204. Carrington, E. M. et al. BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. Proc. Natl Acad. Sci. USA 107, 10967–10971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee, E. F. et al. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Proc. Natl Acad. Sci. USA 108, 6999–7003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Gavathiotis, E., Reyna, D. E., Bellairs, J. A., Leshchiner, E. S. & Walensky, L. D. Direct and selective small-molecule activation of proapoptotic BAX. Nature Chem. Biol. 8, 639–645 (2012).

    CAS  Google Scholar 

  207. Hyman, B. T. & Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nature Rev. Neurosci. 13, 395–406 (2012).

    CAS  Google Scholar 

  208. Kale, J., Liu, Q., Leber, B. & Andrews, D. W. Shedding light on apoptosis at subcellular membranes. Cell 151, 1179–1184 (2012).

    CAS  PubMed  Google Scholar 

  209. Lovell, J. F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    CAS  PubMed  Google Scholar 

  210. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008714 (2013).

    PubMed  Google Scholar 

  211. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–652 (2006).

    CAS  PubMed  Google Scholar 

  212. He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Chen, Y. B. et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J. Cell Biol. 195, 263–276 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing inhibitor of apoptosis (IAP) proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  215. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  216. Dai, H., Meng, X. W., Lee, S. H., Schneider, P. A. & Kaufmann, S. H. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J. Biol. Chem. 284, 18311–18322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14, 1711–1713 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.E.C and G.L contributed equally to this work. The authors thank their colleagues at the Walter and Eliza Hall Institute of Medical Research (WEHI), particularly S. Cory, P. Colman, P. Bouillet, D. Huang, R. Kluck, G. Dewson and D. Westphal, for many stimulating discussions on the issues addressed here, and S. Cory and P. Colman for comments on the manuscript. Their research is supported chiefly by program grant 1016701 and project grants 1025201 and 1025138 from the Australian National Health and Research Council, Australian Research Council (ARC) fellowship FT0992105, funds from the Cancer Council of Victoria and a Center (7417) established by the Leukemia and Lymphoma Society, as well as operational infrastructure grants from the Australian Government (IRISS) and the Victorian State Government (OIS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Strasser or Jerry M. Adams.

Ethics declarations

Competing interests

The authors had a collaboration with Genentech and Abbott Laboratories (now AbbVie) for cancer drug development.

PowerPoint slides

Glossary

Sertoli cells

Cells that nourish developing sperm cells through the stages of spermatogenesis.

'Eat me' signals

Surface markers on apoptotic cells, such as phosphatidylserine, that facilitate their recognition and phagocytosis by healthy cells.

Necroptosis

A programmed form of necrosis regulated by receptor-interacting Ser/Thr protein (RIP) kinases.

Activator BH3-only proteins

BH3-only proteins, such as BIM and the truncated form of BID (tBID) that can directly bind and activate BAX or BAK.

Sensitizer BH3-only proteins

BH3-only proteins, such as BAD, that can activate BAX or BAK only indirectly by neutralizing pro-survival BCL-2 family members, thereby preventing them from restraining BAX or BAK.

Staple

A hydrocarbon bridge introduced into a peptide that links amino acids four or seven residues apart to maintain the peptide in a helical conformation, which is thought to convey higher affinity for its target, as well as greater stability and perhaps cell penetration.

Mitochondrial fission and fusion

Mitochondria divide by fission but also continually fuse into tubular networks; thus, their structure is dynamic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czabotar, P., Lessene, G., Strasser, A. et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15, 49–63 (2014). https://doi.org/10.1038/nrm3722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing