Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chlamydia cell biology and pathogenesis

Key Points

  • Chlamydia spp. are obligate intracellular pathogens that are important causes of human and animal diseases. Chlamydiae share a common developmental cycle in which they alternate between the extracellular, infectious elementary body and the intracellular, non-infectious reticulate body.

  • Chlamydiae use several redundant mechanisms to enter host cells and to establish their intracellular membrane bound niche — the inclusion.

  • Chlamydiae deliver effector proteins into the inclusion membrane and into host cells to promote replication and survival.

  • Chlamydiae encode a unique set of T3SS effectors, the inclusion membrane proteins (Incs), which are inserted into the inclusion membrane where they may function as structural determinants of the membrane or as scaffolds to interface with various cell pathways in the host.

  • Recent studies have solved the 'chlamydial anomaly' and reveal that Chlamydia spp. do synthesize peptidoglycan and use an atypical mechanism of cell division.

  • The recent major advances in chlamydial genetics open the door for the development of tools and avenues of research that were not previously accessible to this historically intractable pathogen.

Abstract

Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of Chlamydia trachomatis.
Figure 2: Chlamydia–host interactions.
Figure 3: Modulation of host cell survival and death.
Figure 4: Modulation of the innate immune response.

Similar content being viewed by others

References

  1. Bachmann, N. L., Polkinghorne, A. & Timms, P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 22, 464–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Mandell, G. L., Bennett, J. E. & Dolin, R. (eds) Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 7th edn Vol. 2 (Churchill Livingstone/Elsevier, 2010).

    Google Scholar 

  3. Rank, R. G. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 285–310 (ASM Press, 2012).

    Google Scholar 

  4. Malhotra, M., Sood, S., Mukherjee, A., Muralidhar, S. & Bala, M. Genital Chlamydia trachomatis: an update. Indian J. Med. Res. 138, 303–316 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. de Vrieze, N. H. & de Vries, H. J. Lymphogranuloma venereum among men who have sex with men. An epidemiological and clinical review. Expert Rev. Anti Infect. Ther. 12, 697–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Murthy, A. K., Arulanandam, B. P. & Zhong, G. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 311–333 (ASM Press, 2012).

    Google Scholar 

  7. Bastidas, R. J., Elwell, C. A., Engel, J. N. & Valdivia, R. H. Chlamydial intracellular survival strategies. Cold Spring Harb. Perspect. Med. 3, a010256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Myers, G. S. A., Crabtree, J. & Creasy, H. H. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 27–50 (ASM press, 2012).

    Google Scholar 

  10. Betts-Hampikian, H. J. & Fields, K. A. The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Front. Microbiol. 1, 114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fields, K. A. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 192–216 (ASM press, 2012).

    Google Scholar 

  12. Lei, L. et al. Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum. Infect. Immun. 82, 983–992 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelson, D. E. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 74–96 (ASM Press, 2012).

    Google Scholar 

  14. Omsland, A., Sixt, B. S., Horn, M. & Hackstadt, T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol. Rev. 38, 779–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saka, H. A. et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol. Microbiol. 82, 1185–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hackstadt, T. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 126–148 (ASM press, 2012).

    Google Scholar 

  17. Hegemann, J. H. & Moelleken, K. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 97–125 (ASM press, 2012).

    Google Scholar 

  18. Mehlitz, A. & Rudel, T. Modulation of host signaling and cellular responses by Chlamydia. Cell Commun. Signal. 11, 90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan, M. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 149–169 (ASM press, 2012).

    Google Scholar 

  20. Moore, E. R. & Ouellette, S. P. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Front. Cell. Infect. Microbiol. 4, 157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elwell, C. A. & Engel, J. N. Lipid acquisition by intracellular Chlamydiae. Cell. Microbiol. 14, 1010–1018 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barta, M. L. et al. Atypical response regulator ChxR from Chlamydia trachomatis is structurally poised for DNA binding. PLoS ONE 9, e91760 (2014).

  23. Rosario, C. J., Hanson, B. R. & Tan, M. The transcriptional repressor EUO regulates both subsets of Chlamydia late genes. Mol. Microbiol. 94, 888–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barta, M. L., Battaile, K. P., Lovell, S. & Hefty, P. S. Hypothetical protein CT398 (CdsZ) interacts with σ54 (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis. Protein Sci. 24, 1617–1632 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanson, B. R., Slepenkin, A., Peterson, E. M. & Tan, M. Chlamydia trachomatis type III secretion proteins regulate transcription. J. Bacteriol. 197, 3238–3244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen, L. et al. Multipart chaperone–effector recognition in the type III secretion system of Chlamydia trachomatis. J. Biol. Chem. 290, 28141–28155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Byrne, G. I. & Beatty, W. L. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 265–284 (ASM press, 2012).

    Google Scholar 

  28. Kim, J. H. et al. Endosulfatases SULF1 and SULF2 limit Chlamydia muridarum infection. Cell. Microbiol. 15, 1560–1571 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosmarin, D. M. et al. Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc. Natl Acad. Sci. USA 109, 10059–10064 (2012).

    Article  PubMed  Google Scholar 

  30. Ajonuma, L. C. et al. CFTR is required for cellular entry and internalization of Chlamydia trachomatis. Cell Biol. Int. 34, 593–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Stallmann, S. & Hegemann, J. H. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell. Microbiol. http://dx.doi.org/10.1111/cmi.12549 (2015).

  32. Becker, E. & Hegemann, J. H. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 3, 544–556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Molleken, K., Becker, E. & Hegemann, J. H. The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry. PLoS Pathog. 9, e1003325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elwell, C. A., Ceesay, A., Kim, J. H., Kalman, D. & Engel, J. N. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog. 4, e1000021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J. H., Jiang, S., Elwell, C. A. & Engel, J. N. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog. 7, e1002285 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subbarayal, P. et al. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11, e1004846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gerard, H. C., Fomicheva, E., Whittum-Hudson, J. A. & Hudson, A. P. Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells. Microb. Pathog. 44, 279–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrell, J. C. & Fields, K. A. A working model for the type III secretion mechanism in Chlamydia. Microbes Infect. 18, 84–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nans, A., Saibil, H. R. & Hayward, R. D. Pathogen–host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cell. Microbiol. 16, 1457–1472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumoux, M., Nans, A., Saibil, H. R. & Hayward, R. D. Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Curr. Opin. Microbiol. 23, 1–7 (2015).

    Article  PubMed  Google Scholar 

  41. Korhonen, J. T. et al. Chlamydia pneumoniae entry into epithelial cells by clathrin-independent endocytosis. Microb. Pathog. 52, 157–164 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Dai, W. & Li, Z. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Int. J. Clin. Exp. Pathol. 7, 5404–5414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiwani, S. et al. Chlamydia trachomatis TarP harbors distinct G and F actin binding domains that bundle actin filaments. J. Bacteriol. 195, 708–716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thwaites, T. et al. The Chlamydia effector TarP mimics the mammalian leucine–aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion. J. Biol. Chem. 289, 30426–30442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, Y. S. et al. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog. 10, e1003954 (2014). This study provides the first genetic validation of the role of a C. trachomatis T3SS effector and reveals a hierarchical order in bacterial effector translocation into host cells by differential binding to shared chaperones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pais, S. V., Milho, C., Almeida, F. & Mota, L. J. Identification of novel type III secretion chaperone–substrate complexes of Chlamydia trachomatis. PLoS ONE 8, e56292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bullock, H. D., Hower, S. & Fields, K. A. Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins. J. Biol. Chem. 287, 28078–28086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mojica, S. A. et al. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol. Biol. Cell 26, 1918–1934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kokes, M. & Valdivia, R. H. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 170–191 (ASM press, 2012).

    Google Scholar 

  50. Richards, T. S., Knowlton, A. E. & Grieshaber, S. S. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking. BMC Microbiol. 13, 185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mital, J., Lutter, E. I., Barger, A. C., Dooley, C. A. & Hackstadt, T. Chlamydia trachomatis inclusion membrane protein CT850 interacts with the dynein light chain DYNLT1 (Tctex1). Biochem. Biophys. Res. Commun. 462, 165–170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bocker, S. et al. Chlamydia psittaci inclusion membrane protein IncB associates with host protein Snapin. Int. J. Med. Microbiol. 304, 542–553 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Damiani, M. T., Gambarte Tudela, J. & Capmany, A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell. Microbiol. 16, 1329–1338 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Gambarte Tudela, J. et al. The late endocytic Rab39a GTPase regulates multivesicular bodies–chlamydial inclusion interaction and bacterial growth. J. Cell Sci. 128, 3068–3081 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Leiva, N., Capmany, A. & Damiani, M. T. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication. Cell. Microbiol. 15, 114–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Schlager, M. A. et al. Bicaudal D family adaptor proteins control the velocity of Dynein-based movements. Cell Rep. 8, 1248–1256 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Moorhead, A. M., Jung, J. Y., Smirnov, A., Kaufer, S. & Scidmore, M. A. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun. 78, 1990–2007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moore, E. R., Mead, D. J., Dooley, C. A., Sager, J. & Hackstadt, T. The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane. Microbiology 157, 830–838 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kabeiseman, E. J., Cichos, K. H. & Moore, E. R. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Front. Cell. Infect. Microbiol. 4, 129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lucas, A. L., Ouellette, S. P., Kabeiseman, E. J., Cichos, K. H. & Rucks, E. A. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Front. Cell. Infect. Microbiol. 5, 68 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kabeiseman, E. J., Cichos, K., Hackstadt, T., Lucas, A. & Moore, E. R. Vesicle-associated membrane protein 4 and syntaxin 6 interactions at the chlamydial inclusion. Infect. Immun. 81, 3326–3337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pokrovskaya, I. D. et al. Chlamydia trachomatis hijacks intra-Golgi COG complex-dependent vesicle trafficking pathway. Cell. Microbiol. 14, 656–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ronzone, E. & Paumet, F. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. PLoS ONE 8, e69769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ronzone, E. et al. An α-helical core encodes the dual functions of the chlamydial protein IncA. J. Biol. Chem. 289, 33469–33480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gauliard, E., Ouellette, S. P., Rueden, K. J. & Ladant, D. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Front. Cell. Infect. Microbiol. 5, 13 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geisler, W. M., Suchland, R. J., Rockey, D. D. & Stamm, W. E. Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J. Infect. Dis. 184, 879–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Mirrashidi, K. M. et al. Global mapping of the Inc–human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18, 109–121 (2015). This study reports the first large-scale chlamydial Inc–host interactome and suggests that by sequestering retromer components Chlamydia spp. can overcome host mechanisms that typically restrict the growth of pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aeberhard, L. et al. The proteome of the isolated Chlamydia trachomatis containing vacuole reveals a complex trafficking platform enriched for retromer components. PLoS Pathog. 11, e1004883 (2015). This study describes the quantitative analysis of the host-cell-derived proteome of inclusions isolated from C. trachomatis and demonstrates that retromer-associated sorting nexins and other components of host cell trafficking are enriched at the inclusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seaman, M. N. The retromer complex — endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–4702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fisher, D. J., Fernandez, R. E. & Maurelli, A. T. Chlamydia trachomatis transports NAD via the Npt1 ATP/ADP translocase. J. Bacteriol. 195, 3381–3386 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gurumurthy, R. K. et al. Dynamin-mediated lipid acquisition is essential for Chlamydia trachomatis development. Mol. Microbiol. 94, 186–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Reiling, J. H. et al. A CREB3–ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat. Cell Biol. 15, 1473–1485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elwell, C. A. et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7, e1002198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Derre, I., Swiss, R. & Agaisse, H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER–Chlamydia inclusion membrane contact sites. PLoS Pathog. 7, e1002092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agaisse, H. & Derre, I. Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect. Immun. 82, 2037–2047 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cox, J. V., Naher, N., Abdelrahman, Y. M. & Belland, R. J. Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth. Cell. Microbiol. 14, 1497–1512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yao, J., Dodson, V. J., Frank, M. W. & Rock, C. O. Chlamydia trachomatis scavenges host fatty acids for phospholipid synthesis via an acyl-acyl carrier protein synthetase. J. Biol. Chem. 290, 22163–22173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yao, J., Cherian, P. T., Frank, M. W. & Rock, C. O. Chlamydia trachomatis relies on autonomous phospholipid synthesis for membrane biogenesis. J. Biol. Chem. 290, 18874–18888 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yao, J. et al. Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis. J. Biol. Chem. 289, 22365–22376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heuer, D. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457, 731–735 (2009). This study reveals that C. trachomatis induces the fragmentation of the Golgi apparatus during infection to acquire lipids and replicate.

    Article  CAS  PubMed  Google Scholar 

  81. Kokes, M. et al. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17, 716–725 (2015). This study describes a defined library of chemically mutagenized and sequenced chlamydial strains and its use for genetic screens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Al-Zeer, M. A. et al. Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface. Mol. Microbiol. 94, 1285–1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kokes, M. & Valdivia, R. H. Differential translocation of host cellular materials into the Chlamydia trachomatis inclusion lumen during chemical fixation. PLoS ONE 10, e0139153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boncompain, G. et al. The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids. PLoS ONE 9, e86196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saka, H. A. et al. Chlamydia trachomatis infection leads to defined alterations to the lipid droplet proteome in epithelial cells. PLoS ONE 10, e0124630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soupene, E., Rothschild, J., Kuypers, F. A. & Dean, D. Eukaryotic protein recruitment into the Chlamydia inclusion: implications for survival and growth. PLoS ONE 7, e36843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Soupene, E., Wang, D. & Kuypers, F. A. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets. Microbiologyopen 4, 235–251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Derre, I. Chlamydiae interaction with the endoplasmic reticulum: contact, function and consequences. Cell. Microbiol. 17, 959–966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Agaisse, H. & Derre, I. STIM1 is a novel component of ER–Chlamydia trachomatis inclusion membrane contact sites. PLoS ONE 10, e0125671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barker, J. R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4, e00018-13 (2013). This study provides the first example of a Gram-negative bacterium that synthesizes its own cyclic di-AMP to activate STING and induce the production of type I interferons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shima, K. et al. The role of endoplasmic reticulum-related BiP/GRP78 in interferon-γ-induced persistent Chlamydia pneumoniae infection. Cell. Microbiol. 17, 923–934 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Mehlitz, A. et al. The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. Cell. Microbiol. 16, 1224–1243 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Dumoux, M., Clare, D. K., Saibil, H. R. & Hayward, R. D. Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic 13, 1612–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Volceanov, L. et al. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion. mBio 5, e01802-14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Patel, A. L. et al. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol. 14, 277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dumoux, M., Menny, A., Delacour, D. & Hayward, R. D. A Chlamydia effector recruits CEP170 to reprogram host microtubule organization. J. Cell Sci. 128, 3420–3434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl Acad. Sci. USA 104, 11430–11435 (2007). This paper describes two distinct strategies that Chlamydia spp. use to exit the host cell at the end of the developmental cycle.

    Article  CAS  PubMed  Google Scholar 

  98. Snavely, E. A. et al. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog. Dis. 71, 336–351 (2014). This study, together with reference 145, provides genetic evidence that CPAF is dispensable for several phenotypes that were previously attributed to CPAF activity and also reveals that CPAF may have a role in dismantling the host cell prior to bacterial exit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, Z., Tang, L., Sun, X., Chai, J. & Zhong, G. Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect. Immun. 83, 2234–2241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lutter, E. I., Barger, A. C., Nair, V. & Hackstadt, T. Chlamydia trachomatis inclusion membrane protein CT228 recruits elements of the myosin phosphatase pathway to regulate release mechanisms. Cell Rep. 3, 1921–1931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chin, E., Kirker, K., Zuck, M., James, G. & Hybiske, K. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS ONE 7, e46949 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Karunakaran, K., Subbarayal, P., Vollmuth, N. & Rudel, T. Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection. Mol. Microbiol. 98, 694–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Flores, R. & Zhong, G. The Chlamydia pneumoniae inclusion membrane protein Cpn1027 interacts with host cell Wnt signaling pathway regulator cytoplasmic activation/proliferation-associated protein 2 (Caprin2). PLoS ONE 10, e0127909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sharma, M. & Rudel, T. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? FEMS Immunol. Med. Microbiol. 55, 154–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Gonzalez, E. et al. Chlamydia infection depends on a functional MDM2–p53 axis. Nat. Commun. 5, 5201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Siegl, C., Prusty, B. K., Karunakaran, K., Wischhusen, J. & Rudel, T. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep. 9, 918–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Kun, D., Xiang-Lin, C., Ming, Z. & Qi, L. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18, 1083–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Bohme, L., Albrecht, M., Riede, O. & Rudel, T. Chlamydia trachomatis-infected host cells resist dsRNA-induced apoptosis. Cell. Microbiol. 12, 1340–1351 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, A. L., Johnson, K. A., Lee, J. K., Sutterlin, C. & Tan, M. CPAF: a chlamydial protease in search of an authentic substrate. PLoS Pathog. 8, e1002842 (2012). This study reports that the proteolysis of many of the previously reported CPAF substrates occurs during the preparation of lysates from cells that are infected with Chlamydia spp. rather than in intact cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bothe, M., Dutow, P., Pich, A., Genth, H. & Klos, A. DXD motif-dependent and -independent effects of the Chlamydia trachomatis cytotoxin CT166. Toxins (Basel) 7, 621–637 (2015).

    Article  CAS  Google Scholar 

  111. Brown, H. M. et al. Multinucleation during C. trachomatis infections is caused by the contribution of two effector pathways. PLoS ONE 9, e100763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, J., Lesser, C. F. & Lory, S. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456, 112–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nawrotek, A. et al. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. J. Biol. Chem. 289, 25199–25210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun, H. S., Sin, A. T., Poirier, M. & Harrison, R. E. Chlamydia trachomatis inclusion disrupts host cell cytokinesis to enhance its growth in multinuclear cells. J. Cell Biochem. 117, 132–143 (2015).

    Article  CAS  Google Scholar 

  115. Knowlton, A. E. et al. Chlamydia trachomatis infection causes mitotic spindle pole defects independently from its effects on centrosome amplification. Traffic 12, 854–866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mital, J., Miller, N. J., Fischer, E. R. & Hackstadt, T. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell. Microbiol. 12, 1235–1249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chumduri, C., Gurumurthy, R. K., Zadora, P. K., Mi, Y. & Meyer, T. F. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe 13, 746–758 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Knowlton, A. E., Fowler, L. J., Patel, R. K., Wallet, S. M. & Grieshaber, S. S. Chlamydia induces anchorage independence in 3T3 cells and detrimental cytological defects in an infection model. PLoS ONE 8, e54022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Padberg, I., Janssen, S. & Meyer, T. F. Chlamydia trachomatis inhibits telomeric DNA damage signaling via transient hTERT upregulation. Int. J. Med. Microbiol. 303, 463–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Nagarajan, U. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 217–239 (ASM press, 2012).

    Google Scholar 

  122. Darville, T. & O'Connell, C. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 240–264 (ASM press, 2012).

    Google Scholar 

  123. Shimada, K., Crother, T. R. & Arditi, M. Innate immune responses to Chlamydia pneumoniae infection: role of TLRs, NLRs, and the inflammasome. Microbes Infect. 14, 1301–1307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Najarajan, U. in Bacterial Activation of Type I Interferons (ed. Parker, D.) 101–102 (Springer, 2014).

    Google Scholar 

  125. Zhang, Y. et al. The DNA sensor, cyclic GMP–AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J. Immunol. 193, 2394–2404 (2014). This study demonstrates that DNA from C. trachomatis binds to cGAS to activate STING and induce type I IFN responses during infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Abdul-Sater, A. A. et al. Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J. Biol. Chem. 285, 41637–41645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Itoh, R. et al. Chlamydia pneumoniae harness host NLRP3 inflammasome-mediated caspase-1 activation for optimal intracellular growth in murine macrophages. Biochem. Biophys. Res. Commun. 452, 689–694 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Wolf, K. & Fields, K. A. Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. J. Immunol. 190, 1695–1701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Abu-Lubad, M., Meyer, T. F. & Al-Zeer, M. A. Chlamydia trachomatis inhibits inducible NO synthase in human mesenchymal stem cells by stimulating polyamine synthesis. J. Immunol. 193, 2941–2951 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Al-Zeer, M. A., Al-Younes, H. M., Lauster, D., Abu Lubad, M. & Meyer, T. F. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNγ-inducible guanylate binding proteins. Autophagy 9, 50–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haldar, A. K. et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc. Natl Acad. Sci. USA 112, E5628–E5637 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Haldar, A. K., Piro, A. S., Pilla, D. M., Yamamoto, M. & Coers, J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PLoS ONE 9, e86684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Finethy, R. et al. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages. Infect. Immun. 83, 4740–4749 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Haldar, A. K. et al. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathog. 9, e1003414 (2013). This study reveals that the intracellular immune recognition of pathogen-containing vacuoles is partly dictated by the lack of 'self' IRGM proteins from these structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wolf, K., Plano, G. V. & Fields, K. A. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cell. Microbiol. 11, 769–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kessler, M. et al. Chlamydia trachomatis disturbs epithelial tissue homeostasis in fallopian tubes via paracrine Wnt signaling. Am. J. Pathol. 180, 186–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Pennini, M. E., Perrinet, S., Dautry-Varsat, A. & Subtil, A. Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog. 6, e1000995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Olive, A. J. et al. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microbe 15, 113–124 (2014). This study uses a global protein stability platform (GPS) to survey changes in host protein stability in response to infection with Chlamydia spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Furtado, A. R. et al. The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cell. Microbiol. 15, 2064–2079 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Misaghi, S. et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Claessen, J. H. et al. Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. Chembiochem 14, 343–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Conrad, T., Yang, Z., Ojcius, D. & Zhong, G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect. 15, 1026–1032 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  143. Johnson, K. A., Lee, J. K., Chen, A. L., Tan, M. & Sutterlin, C. Induction and inhibition of CPAF activity during analysis of Chlamydia-infected cells. Pathog. Dis. 73, 1–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tan, M. & Sutterlin, C. The Chlamydia protease CPAF: caution, precautions and function. Pathog. Dis. 72, 7–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dille, S. et al. Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF. PLoS ONE 9, e103220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hooppaw, A. J. & Fisher, D. J. A coming of age story: Chlamydia in the post-genetic era. Infect. Immun. 84, 612–621 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Buckner, L. R. et al. Innate immune mediator profiles and their regulation in a novel polarized immortalized epithelial cell model derived from human endocervix. J. Reprod. Immunol. 92, 8–20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hall, J. V. et al. The multifaceted role of oestrogen in enhancing Chlamydia trachomatis infection in polarized human endometrial epithelial cells. Cell. Microbiol. 13, 1183–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Kintner, J., Schoborg, R. V., Wyrick, P. B. & Hall, J. V. Progesterone antagonizes the positive influence of estrogen on Chlamydia trachomatis serovar E in an Ishikawa/SHT-290 co-culture model. Pathog. Dis. 73, ftv015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mueller, K. E., Plano, G. V. & Fields, K. A. New frontiers in type III secretion biology: the Chlamydia perspective. Infect. Immun. 82, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dehoux, P., Flores, R., Dauga, C., Zhong, G. & Subtil, A. Multi-genome identification and characterization of Chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics 12, 109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lutter, E. I., Martens, C. & Hackstadt, T. Evolution and conservation of predicted inclusion membrane proteins in Chlamydiae. Comp. Funct. Genomics 2012, 362104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mital, J., Miller, N. J., Dorward, D. W., Dooley, C. A. & Hackstadt, T. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis. PLoS ONE 8, e63426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jeffrey, B. M., Maurelli, A. T. & Rockey, D. D. in Intracellular Pathogens 1: Chlamydiales Vol. 1 (eds Tan, M. & Bavoil, P. M.) 334–351 (Washington, 2012).

    Google Scholar 

  155. Tam, J. E., Davis, C. H. & Wyrick, P. B. Expression of recombinant DNA introduced into Chlamydia trachomatis by electroporation. Can. J. Microbiol. 40, 583–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Binet, R. & Maurelli, A. T. Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc. Natl Acad. Sci. USA 106, 292–297 (2009). This study reports the first generation of stable transformants of Chlamydia spp. by allelic exchange and, together with the studies in references 157, 163 and 166, has helped to open the door towards easier genetic manipulation of chlamydial species.

    Article  PubMed  Google Scholar 

  157. Wang, Y. et al. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog. 7, e1002258 (2011). In this study the authors develop a new shuttle vector based on the Chlamydia cryptic plasmid and modify transformation and selection protocols to achieve stable transformants of Chlamydia spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wickstrum, J., Sammons, L. R., Restivo, K. N. & Hefty, P. S. Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS ONE 8, e76743 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Agaisse, H. & Derre, I. A. C. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter. PLoS ONE 8, e57090 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bauler, L. D. & Hackstadt, T. Expression and targeting of secreted proteins from Chlamydia trachomatis. J. Bacteriol. 196, 1325–1334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Weber, M. M., Bauler, L. D., Lam, J. & Hackstadt, T. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect. Immun. 83, 4710–4718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mueller, K. E. & Fields, K. A. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS ONE 10, e0135295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nguyen, B. D. & Valdivia, R. H. Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc. Natl Acad. Sci. USA 109, 1263–1268 (2012). In this study the authors use chemical mutagenesis, coupled with whole-genome sequencing and a system for DNA exchange in infected cells, to generate mutants of C. trachomatis that can be used to correlate phenotype with genotype.

    Article  PubMed  Google Scholar 

  164. Demars, R., Weinfurter, J., Guex, E., Lin, J. & Potucek, Y. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J. Bacteriol. 189, 991–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Rajaram, K. et al. Mutational analysis of the Chlamydia muridarum plasticity zone. Infect. Immun. 83, 2870–2881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Johnson, C. M. & Fisher, D. J. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. PLoS ONE 8, e83989 (2013). This study reports the first application-specific intron targeting to insertionally inactivate a gene in the chromosome of C. trachomatis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kari, L. et al. Generation of targeted Chlamydia trachomatis null mutants. Proc. Natl Acad. Sci. USA 108, 7189–7193 (2011).

    Article  PubMed  Google Scholar 

  168. Jacquier, N., Viollier, P. H. & Greub, G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol. Rev. 39, 262–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Pilhofer, M. et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4, 2856 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014). In this study the authors use a novel click-chemistry-based approach to demonstrate for the first time that C. trachomatis has peptidoglycan and functional peptidoglycan-modifying enzymes.

    Article  CAS  PubMed  Google Scholar 

  171. Ouellette, S. P. et al. Analysis of MreB interactors in Chlamydia reveals a RodZ homolog but fails to detect an interaction with MraY. Front. Microbiol. 5, 279 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kemege, K. E. et al. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB. Mol. Microbiol. 95, 365–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Jacquier, N., Frandi, A., Pillonel, T., Viollier, P. H. & Greub, G. Cell wall precursors are required to organize the chlamydial division septum. Nat. Commun. 5, 3578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Packiam, M., Weinrick, B., Jacobs, W. R. & Maurelli, A. T. Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc. Nat. Acad. Sci. USA 112, 11660–11665 (2015). This study provides the first structural confirmation of peptidoglycan in pathogenic chlamydiae and the evidence from this study is consistent with the study in reference 170.

    Article  CAS  PubMed  Google Scholar 

  175. Klockner, A. et al. AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat. Commun. 5, 4201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Frandi, A., Jacquier, N., Theraulaz, L., Greub, G. & Viollier, P. H. FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat. Commun. 5, 4200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues in the field whose work could not be included owing to space constraints. The authors gratefully acknowledge financial support from the US National Institutes of Health (R01 AI073770, AI105561 and AI122747) to J.E., and from the University of California, San Francisco (UCSF)-Gladstone Institute for Virology and Immunology, and the Center for AIDS Research to C.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Engel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Biovars

Variants that differ physiologically and/or biochemically from other strains of a particular species.

Serovar

A subdivision of a species or subspecies that is distinguished by a characteristic set of antigens.

Type V secretion system

(T5SS). A system that exports autotransporters that are composed of a carboxy-terminal β-barrel translocator domain and an amino-terminal passenger domain that passes through the interior of the barrel to face the external environment.

Type II secretion system

(T2SS). A system that exports proteins across the bacterial inner membrane through the general secretory (Sec) pathway and across the outer membrane through secretin. In chlamydiae, T2SS effectors are secreted into the inclusion lumen, but can access the host cytosol through outer membrane vesicles.

Type III secretion system

(T3SS). A needle-like apparatus found in Gram-negative bacteria that delivers proteins, called effectors, across the inner and outer bacterial membranes and across eukaryotic membranes to the host membrane or the cytosol.

Homotypic fusion

The fusion between cells or vesicles of the same type. For cells that are infected with some Chlamydia spp., several inclusions undergo fusion with each other to form one, or a few, larger inclusions.

Sigma factors

Bacterial proteins that direct the binding of RNA polymerase to promoters, which enables the initiation of transcription.

Response regulators

Subunits of bacterial two-component signal transduction pathways that regulate output in response to an environmental stimulus.

Polymorphic membrane protein

(PMP). A member of a diverse group of surface-localized, immunodominant proteins that are secreted by the type V secretion system (T5SS) of Chlamydia spp.

ADP ribosylation factor 6

(ARF6). A member of the GTPase family of small GTPases that regulates vesicular transport, in which they function to recruit coat proteins that are necessary for the formation of vesicles.

Dynactin

A multisubunit complex found in eukaryotic cells that binds to the motor protein dynein and aids in the microtubule-based transport of vesicles.

SNARE proteins

(Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor proteins). Soluble NSF attachment proteins are a large superfamily of proteins that mediate vesicle fusion by pairing with each other on adjacent membranes through SNARE domains.

RAB GTPases

Small GTPases that localize to the cytosolic face of specific intracellular membranes, where they regulate intracellular trafficking and membrane fusion. Different RABs are specific for distinct subcellular compartments.

Phosphoinositide lipid kinases

A family of enzymes that generates phosphorylated variants of phosphatidylinositols (secondary messengers), which are important for signalling and membrane remodelling. Organelles are, in part, identified by the specific lipid species that they contain.

Multivesicular bodies

(MVBs). A specialized set of late endosomes that contains internal vesicles formed by the inward budding of the outer endosomal membrane. MVBs are involved in protein sorting and are rich in lipids, including sphingolipids and cholesterol.

Dynamin

A large GTPase that is involved in the scission of newly formed vesicles from the cell surface, endosomes and the Golgi apparatus.

Ceramide endoplasmic reticulum transport protein

(CERT). A cytosolic protein that mediates the non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi apparatus where it is converted to sphingomyelin.

Type II fatty acid synthesis

A type of fatty acid synthesis in which the enzymes that catalyse each step in the synthesis pathway exist as distinct, individual proteins rather than as a multi-enzyme complex as in type I fatty acid synthesis.

Caspases

A family of cysteine proteases that has essential roles in apoptosis, necrosis and inflammation.

14-3-3 proteins

A family of conserved regulatory molecules that usually binds to a phosphoserine or phosphothreonine residue found in functionally diverse signalling proteins in eukaryotic cells.

Stimulator of interferon genes

(STING). A signalling molecule that recognizes cytosolic cyclic dinucleotides and activates the production of type I interferons.

Endoplasmic reticulum stress response

A stress pathway that is activated by perturbations in protein folding, lipid and steroid biosynthesis, and intracellular calcium stores.

Septins

A family of GTP-binding proteins that assembles into oligomeric complexes to form large filaments and rings that act as scaffolds and diffusion barriers

Chlamydia protease-like activity factor

(CPAF). A type II secreted broad-spectrum protease produced by Chlamydia spp. that may have a role in cleaving host proteins on release into the host cell cytosol late in infection or extracellularly following the lysis of the host cell.

BH3-only proteins

Members of the B cell lymphoma 2 (BCL-2) protein family, which are essential initiators of programmed cell death and are required for apoptosis that is induced by cytotoxic stimuli.

β-catenin–WNT pathway

A eukaryotic signal transduction pathway that signals through the binding of the WNT protein ligand to a frizzled family cell surface receptor, which results in changes to gene transcription, cell polarity or intracellular calcium levels.

Intrinsic and extrinsic apoptosis

A programmed form of cell death that involves the degradation of cellular constituents by caspases that are activated through either the intrinsic (mitochondria-mediated) or extrinsic (death receptor-mediated) apoptotic pathways.

p53

A eukaryotic tumour suppressor that maintains genome integrity by activating DNA repair, arresting the cell cycle or initiating apoptosis.

Cytokinesis

The physical process of cell division, which divides the cytoplasm of a parental cell into two daughter cells.

Toll-like receptors

(TLRs). Transmembrane proteins that have a key role in the innate immune system by recognizing pathogen-associated molecular patterns (PAMPs), which are structurally conserved molecules derived from microorganisms.

Type I interferons

(Type I IFNs). A subgroup of interferon proteins produced as part of the innate immune response against intracellular pathogens.

Nucleotide-binding oligomerization domain-containing 1

(NOD1). A cytosolic pattern-recognition receptor that recognizes bacterial peptidoglycan.

NLRP3–ASC inflammasome

A multiprotein complex, consisting of caspase1, NOD-, LRR- and PYD domain-containing protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC), that processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 into their mature forms.

Cell-autonomous immunity

The ability of a host cell to eliminate an invasive infectious agent, which relies on microbial proteins, specialized degradative compartments and programmed host cell death.

Nuclear factor-κB

(NF-κB) A protein complex that is translocated from the cytosol to the nucleus and regulates DNA transcription, cytokine production and cell survival in response to harmful cellular stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol 14, 385–400 (2016). https://doi.org/10.1038/nrmicro.2016.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.30

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology