Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of secretory antibodies in infection immunity

Key Points

  • Secretory antibodies (SIgs) have long been recognized as immune effectors that protect mucosal epithelia from infection by pathogens.

  • Recent studies have suggested that this important role is only part of the complex biology of SIgs, and that intracellular neutralization of pathogen determinants within epithelial-cell endosomes may be more important in some infection immunity models than immune exclusion (SIg-mediated blocking of pathogen binding or toxin binding to the epithelial surface).

  • SIgs may also protect the epithelial surface through a phenomenon known as antigen excretion, in which potentially inflammatory antigen in the form of SIg-containing immune complexes is cleared from the subepithelium by the polymeric-immunoglobulin receptor (pIgR).

  • In light of the imperative that is placed on protecting the epithelium from infection in diseases such as HIV/AIDS, and the consequential attempts at mucosal vaccination, it will be important to understand what roles SIgs normally have in maintaining mucosal homeostasis through processes such as T cell regulation and how such processes might be affected by mucosal immunization.

Abstract

The mucosal secretory immune system provides an important primary defence against disease, as studies of humans with mucosal humoral immunodeficiencies suggest that the absence of secretory immunoglobulin A leads to an increase in mucosal infections. However, the infection risks posed do not seem to provide the evolutionary drive to retain constitutive secretion of often 'hard won' protein, suggesting that secretory antibodies may have some other important function (or functions). This Review examines the evidence that secretory antibodies provide an important defence against infection in specific animal models and explores complementary explanations for the evolution of the secretory immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymeric-immunoglobulin receptor-mediated secretion of antibodies.
Figure 2: Induction of immunoglobulin A production in the mouse intestine.
Figure 3: Protection of the mucosal surface by secretory immunoglobulin through immune exclusion, intracellular neutralization or antigen excretion.
Figure 4: Function of the secretory-antibody response in maintaining homeostasis at the mucosal surface during steady state and during infection.

Similar content being viewed by others

References

  1. Michetti, P., Mahan, M. J., Slauch, J. M., Mekalanos, J. J. & Neutra, M. R. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun. 60, 1786–1792 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Johansen, F. E., Braathen, R. & Brandtzaeg, P. Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol. 52, 240–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Vaerman, J. P., Langendries, A., Giffroy, D., Brandtzaeg, P. & Kobayashi, K. Lack of SC/pIgR-mediated epithelial transport of a human polymeric IgA devoid of J chain: in vitro and in vivo studies. Immunology 95, 90–96 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hendrickson, B. A. et al. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J. Exp. Med. 182, 1905–1911 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Brandtzaeg, P. Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J. Immunol. 112, 1553–1559 (1974).

    CAS  PubMed  Google Scholar 

  6. Brandtzaeg, P. & Prydz, H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311, 71–73 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Lycke, N., Erlandsson, L., Ekman, L., Schon, K. & Leanderson, T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J. Immunol. 163, 913–919 (1999). A discussion about the role of the J chain in antibody secretion and the requirement for IgA in toxin neutralization.

    CAS  PubMed  Google Scholar 

  8. Shimada, S. et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J. Immunol. 163, 5367–5373 (1999).

    CAS  PubMed  Google Scholar 

  9. Uren, T. K. et al. Role of the polymeric Ig receptor in mucosal B cell homeostasis. J. Immunol. 170, 2531–2539 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Norderhaug, I. N., Johansen, F. E., Schjerven, H. & Brandtzaeg, P. Regulation of the formation and external transport of secretory immunoglobulins. Crit. Rev. Immunol. 19, 481–508 (1999).

    CAS  PubMed  Google Scholar 

  11. Johansen, F. E. et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190, 915–922 (1999). This work shows that mice that are deficient in pIgR are also deficient for IgA transport, confirming the in vitro models of SIg secretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krajci, P. et al. Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues. Biochem. Biophys. Res. Commun. 158, 783–789 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Mostov, K. E., Friedlander, M. & Blobel, G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308, 37–43 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Mostov, K. E., Kraehenbuhl, J. P. & Blobel, G. Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc. Natl Acad. Sci. USA 77, 7257–7261 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fallgreen-Gebauer, E. et al. The covalent linkage of secretory component to IgA. structure of sIgA. Biol. Chem. Hoppe Seyler 374, 1023–1028 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Chintalacharuvu, K. R. et al. Disulfide bond formation between dimeric immunoglobulin A and the polymeric immunoglobulin receptor during hepatic transcytosis. Hepatology 19, 162–173 (1994).

    CAS  PubMed  Google Scholar 

  17. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fagarasan, S. Evolution, development, mechanism and function of IgA in the gut. Curr. Opin. Immunol. 20, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Cerutti, A. Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunol. 1, 8–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Honda, K. & Takeda, K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol. 2, 187–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Hanson, L. A. & Korotkova, M. The role of breastfeeding in prevention of neonatal infection. Semin. Neonatol. 7, 275–281 (2002).

    Article  PubMed  Google Scholar 

  22. Shroff, K. E., Meslin, K. & Cebra, J. J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63, 3904–3913 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barone, F., Patel, P., Sanderson, J. D. & Spencer, J. Gut-associated lymphoid tissue contains the molecular machinery to support T-cell-dependent and T-cell-independent class switch recombination. Mucosal Immunol. 2, 495–503 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Yuvaraj, S. et al. Evidence for local expansion of IgA plasma cell precursors in human ileum. J. Immunol. 183, 4871–4878 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Coffman, R. L., Lebman, D. A. & Shrader, B. Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Ramsay, A. J. et al. The role of interleukin-6 in mucosal IgA antibody responses in vivo. Science 264, 561–563 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Bergqvist, P., Gardby, E., Stensson, A., Bemark, M. & Lycke, N. Y. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 177, 7772–7783 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Castigli, E. et al. Impaired IgA class switching in APRIL-deficient mice. Proc. Natl Acad. Sci. USA 101, 3903–3908 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002).

    Article  CAS  Google Scholar 

  32. Nardelli, B., Moore, P. A., Li, Y. & Hilbert, D. M. B lymphocyte stimulator (BLyS): a therapeutic trichotomy for the treatment of B lymphocyte diseases. Leuk. Lymphoma 43, 1367–1373 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Roschke, V. et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J. Immunol. 169, 4314–4321 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009). This article demonstrates the role of the intestinal microbiota in shaping both regulation of the mucosal immune system and antibody secretion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nature Immunol. 8, 294–303 (2007).

    Article  CAS  Google Scholar 

  38. He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunol. 6, 507–514 (2005).

    Article  CAS  Google Scholar 

  41. Nathan, C. Role of iNOS in human host defense. Science 312, 1874–1875 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009). The discovery of a pathway for the generation of T H cells from T Reg cells in the gut.

    Article  CAS  PubMed  Google Scholar 

  43. Kroese, F. G. et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1, 75–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Stoel, M. et al. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J. Immunol. 174, 1046–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kroese, F. G., de Waard, R. & Bos, N. A. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol. 8, 11–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Kantor, A. B., Stall, A. M., Adams, S., Herzenberg, L. A. & Herzenberg, L. A. Differential development of progenitor activity for three B-cell lineages. Proc. Natl Acad. Sci. USA 89, 3320–3324 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ha, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. J. Exp. Med. 203, 2541–2550 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000). This study identified a T cell-independent secretory antibody that is generated in the gut in response to gut flora.

    Article  CAS  PubMed  Google Scholar 

  49. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Thurnheer, M. C., Zuercher, A. W., Cebra, J. J. & Bos, N. A. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 170, 4564–4571 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Boursier, L., Farstad, I. N., Mellembakken, J. R., Brandtzaeg, P. & Spencer, J. IgVH gene analysis suggests that peritoneal B cells do not contribute to the gut immune system in man. Eur. J. Immunol. 32, 2427–2436 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Brandtzaeg, P., Nilssen, D. E., Rognum, T. O. & Thrane, P. S. Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol. Clin. North Am. 20, 397–439 (1991).

    CAS  PubMed  Google Scholar 

  53. Yamanaka, T. et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J. Immunol. 170, 816–822 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Brandtzaeg, P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25, 5467–5484 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Bos, N. A., Jiang, H. Q. & Cebra, J. J. T cell control of the gut IgA response against commensal bacteria. Gut 48, 762–764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, H. Q. et al. Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine 22, 805–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Notkins, A. L. Polyreactivity of antibody molecules. Trends Immunol. 25, 174–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  59. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). This article and reference 58 discuss how the gut flora shapes the gut immune response and describe the key role of segmented filamentous bacteria in this process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bos, N. A. et al. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect. Immun. 64, 616–623 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biesbrock, A. R., Reddy, M. S. & Levine, M. J. Interaction of a salivary mucin-secretory immunoglobulin A complex with mucosal pathogens. Infect. Immun. 59, 3492–3497 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Uren, T. K. et al. Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur. J. Immunol. 35, 180–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Allen, J. S., Dougan, G. & Strugnell, R. A. Kinetics of the mucosal antibody secreting cell response and evidence of specific lymphocyte migration to the lung after oral immunisation with attenuated, S. enterica var. typhimurium. FEMS Immunol. Med. Microbiol. 27, 275–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Martinoli, C., Chiavelli, A. & Rescigno, M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27, 975–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Velazquez, C. et al. Giardia lamblia infection induces different secretory and systemic antibody responses in mice. Parasite Immunol. 27, 351–356 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Iweala, O. I. & Nagler, C. R. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol. Rev. 213, 82–100 (2006).

    Article  PubMed  Google Scholar 

  68. Harriman, G. R. et al. Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J. Immunol. 162, 2521–2529 (1999).

    CAS  PubMed  Google Scholar 

  69. Arulanandam, B. P. et al. IgA immunodeficiency leads to inadequate Th cell priming and increased susceptibility to influenza virus infection. J. Immunol. 166, 226–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Y. et al. Immunoglobulin A-deficient mice exhibit altered T helper 1-type immune responses but retain mucosal immunity to influenza virus. Immunology 105, 286–294 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Erlandsson, L., Andersson, K., Sigvardsson, M., Lycke, N. & Leanderson, T. Mice with an inactivated joining chain locus have perturbed IgM secretion. Eur. J. Immunol. 28, 2355–2365 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Hendrickson, B. A. et al. Lack of association of secretory component with IgA in J chain-deficient mice. J. Immunol. 157, 750–754 (1996).

    CAS  PubMed  Google Scholar 

  73. Sait, L. C. et al. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int. Immunol. 19, 257–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Wijburg, O. L. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006). This work elucidates the role of SIg in preventing both the natural transmission and the acquisition of a gastrointestinal pathogen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yamazaki, K. et al. Accumulation of intestinal intraepithelial lymphocytes in association with lack of polymeric immunoglobulin receptor. Eur. J. Immunol. 35, 1211–1219 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Karlsson, M. R., Johansen, F. E., Kahu, H., Macpherson, A. & Brandtzaeg, P. Hypersensitivity and oral tolerance in the absence of a secretory immune system. Allergy 65, 561–570 (2009).

    Article  PubMed  Google Scholar 

  77. Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D. & Nedrud, J. G. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl Acad. Sci. USA 89, 6901–6905 (1992). A demonstration of IgA-mediated intracellular neutralization of pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burns, J. W., Siadat-Pajouh, M., Krishnaney, A. A. & Greenberg, H. B. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272, 104–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Ruggeri, F. M., Johansen, K., Basile, G., Kraehenbuhl, J. P. & Svensson, L. Antirotavirus immunoglobulin A neutralizes virus in vitro after transcytosis through epithelial cells and protects infant mice from diarrhea. J. Virol. 72, 2708–2714 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schwartz-Cornil, I., Benureau, Y., Greenberg, H., Hendrickson, B. A. & Cohen, J. Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J. Virol. 76, 8110–8117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Corthesy, B. et al. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J. Virol. 80, 10692–10699 (2006). A demonstration that intracellular neutralization is more important than immune exclusion for rotavirus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O'Neal, C. M., Harriman, G. R. & Conner, M. E. Protection of the villus epithelial cells of the small intestine from rotavirus infection does not require immunoglobulin A. J. Virol. 74, 4102–4109 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Silvey, K. J., Hutchings, A. B., Vajdy, M., Petzke, M. M. & Neutra, M. R. Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. J. Virol. 75, 10870–10879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wijburg, O. & Strugnell, R. Mucosal immune responses to Escherichia coli and Salmonella infections. In Escherichia coli and Salmonella: cellular and molecular biology (eds Böck, A. et al.) chapter 8.8.12. Ecosal [online] (American Society for Microbiology Press, Washington DC, 2006).

    Google Scholar 

  85. Stager, S. & Muller, N. Giardia lamblia infections in B-cell-deficient transgenic mice. Infect. Immun. 65, 3944–3946 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Snider, D. P., Skea, D. & Underdown, B. J. Chronic giardiasis in B-cell-deficient mice expressing the xid gene. Infect. Immun. 56, 2838–2842 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Davids, B. J. et al. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J. Immunol. 177, 6281–6290 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Langford, T. D. et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect. Immun. 70, 11–18 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Phalipon, A. et al. Protection against invasion of the mouse pulmonary epithelium by a monoclonal IgA directed against Shigella flexneri lipopolysaccharide. Ann. NY Acad. Sci. 730, 356–358 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Michetti, P. et al. Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology 107, 915–923 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Apter, F. M. et al. Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect. Immun. 61, 5279–5285 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Czinn, S. J., Cai, A. & Nedrud, J. G. Protection of germ-free mice from infection by Helicobacter felis after active oral or passive IgA immunization. Vaccine 11, 637–642 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Cunningham, K. A. et al. Poly-immunoglobulin receptor-mediated transport of IgA into the male genital tract is important for clearance of Chlamydia muridarum infection. Am. J. Reprod. Immunol. 60, 405–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Sun, K., Johansen, F. E., Eckmann, L. & Metzger, D. W. An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J. Immunol. 173, 4576–4581 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Way, S. S., Borczuk, A. C. & Goldberg, M. B. Adaptive immune response to Shigella flexneri 2a cydC in immunocompetent mice and mice lacking immunoglobulin A. Infect. Immun. 67, 2001–2004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jones, B. D. & Falkow, S. Salmonellosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol. 14, 533–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  98. Vazquez-Torres, A. et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Tjarnlund, A. et al. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Int. Immunol. 18, 807–816 (2006).

    Article  PubMed  CAS  Google Scholar 

  100. Rodriguez, A. et al. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine 23, 2565–2572 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Brandtzaeg, P., Fjellanger, I. & Gjeruldsen, S. T. Adsorption of immunolgobulin A onto oral bacteria in vivo. J. Bacteriol. 96, 242–249 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaetzel, C. S., Robinson, J. K., Chintalacharuvu, K. R., Vaerman, J. P. & Lamm, M. E. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc. Natl Acad. Sci. USA 88, 8796–8800 (1991). A study showing antigen excretion mediated by pIgR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yan, H., Lamm, M. E., Bjorling, E. & Huang, Y. T. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol. 76, 10972–10979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wright, A., Lamm, M. E. & Huang, Y. T. Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J. Virol. 82, 11526–11535 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77, 11708–11717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arsenescu, R. et al. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunol. 1, 399–411 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Murthy, A. K., Dubose, C. N., Banas, J. A., Coalson, J. J. & Arulanandam, B. P. Contribution of polymeric immunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J. Gastroenterol. Hepatol. 21, 1372–1380 (2006).

    CAS  PubMed  Google Scholar 

  108. Hibi, T., Ogata, H. & Sakuraba, A. Animal models of inflammatory bowel disease. J. Gastroenterol. 37, 409–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Takenouchi-Ohkubo, N. et al. Role of nuclear factor-κB in the expression by tumor necrosis factor-α of the human polymeric immunoglobulin receptor (plgR) gene. Immunogenetics 51, 289–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Schjerven, H., Brandtzaeg, P. & Johansen, F. E. A novel NF-κB/Rel site in intron 1 cooperates with proximal promoter elements to mediate TNF-α-induced transcription of the human polymeric Ig receptor. J. Immunol. 167, 6412–6420 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Hempen, P. M. et al. Transcriptional regulation of the human polymeric Ig receptor gene: analysis of basal promoter elements. J. Immunol. 169, 1912–1921 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Pal, K., Kaetzel, C. S., Brundage, K., Cunningham, C. A. & Cuff, C. F. Regulation of polymeric immunoglobulin receptor expression by reovirus. J. Gen. Virol. 86, 2347–2357 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Schneeman, T. A. et al. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J. Immunol. 175, 376–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Muir, A. et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 30, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Agarwal, S. & Mayer, L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J. Allergy Clin. Immunol. 124, 658–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Cunningham-Rundles, C. & Bodian, C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin. Immunol. 92, 34–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Royle, L. et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278, 20140–20153 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Dallas, S. D. & Rolfe, R. D. Binding of Clostridium difficile toxin A to human milk secretory component. J. Med. Microbiol. 47, 879–888 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Perrier, C., Sprenger, N. & Corthesy, B. Glycans on secretory component participate in innate protection against mucosal pathogens. J. Biol. Chem. 281, 14280–14287 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Phalipon, A. et al. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17, 107–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  PubMed  Google Scholar 

  123. Brundler, M. A. et al. Immunity to viruses in B cell-deficient mice: influence of antibodies on virus persistence and on T cell memory. Eur. J. Immunol. 26, 2257–2262 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Macpherson, A. J. et al. IgA production without μ or δ chain expression in developing B cells. Nature Immunol. 2, 625–631 (2001). This investigation demonstrates that SIg production can occur in μMT−/− mice (mice deficient for the Igμ transmembrane tail exons), revealing a separate lineage of SIg production.

    Article  CAS  Google Scholar 

  125. McCoy, K. D. et al. Polyclonal and specific antibodies mediate protective immunity against enteric helminth infection. Cell Host Microbe 4, 362–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Maaser, C. et al. Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect. Immun. 72, 3315–3324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Simmons, C. P. et al. Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium. Infect. Immun. 71, 5077–5086 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gibson, A. et al. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J. Cell Biol. 143, 81–94 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lindh, E. Increased risistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J. Immunol. 114, 284–286 (1975).

    CAS  PubMed  Google Scholar 

  130. Underdown, B. J. & Dorrington, K. J. Studies on the structural and conformational basis for the relative resistance of serum and secretory immunoglobulin A to proteolysis. J. Immunol. 112, 949–959 (1974).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all students and staff from the University of Melbourne, Australia, who have contributed to the SIg projects. O.W. is a Career Development Award recipient of the National Health and Medical Research Council (Australia). The authors apologize to those who have contributed to this field but could not be cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Strugnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Chlamydia muridarum

Escherichia coli

Giardia lamblia

Salmonella enterica subsp. enterica serovar Typhimurium

Shigella flexneri

Vibrio cholerae

FURTHER INFORMATION

Richard A. Strugnell's homepage

Glossary

Backpack tumour

Antibody-secreting tumour that is induced by the transfer of antibody-secreting hybridomas to naive animals through subcutaneous injection of the hybridomas in an area of the back.

Antibody avidity

The sum of the affinities of individual Fab–epitope interactions. Dimeric antibodies will have a higher avidity than monomeric antibodies. Antigens with repeating identical epitopes are bound with higher avidity than antigens that carry a single epitope.

Columnar epithelial cell

Differentiated epithelial cell that lines mucosal surfaces, with a column-like appearance and an elongated nucleus. These cells have a lumen-facing ('apical') surface and a tissue facing ('basolateral') surface.

Class switching

Occurs when the activated B cell rearranges the genes encoding the constant region of the antibody molecule that is produced; this rearrangement is usually dependent on cytokines produced by T cells. Hence, a single B cell may produce daughter cells that produce different isotypes (for example, IgG and IgE) of the same antibody specificity. Also known as isotype switching.

Monoassociation

The introduction of a single species, usually a gut flora species, into a germ-free animal.

Complement

Cascade of more than 20 serum glycoproteins that interact to affect some aspects of humoral immunity (for example, lysis of bacteria and opsonization) and which may also drive inflammatory processes such as neutrophil recruitment.

Peyer's patch

Region of differentiated lymphoid tissue found in the lamina propria of the small intestine, containing B cell-rich germinal centres separated by regions containing T cells. The so-called 'dome' epithelium that overlies the Peyer's patch is rich in 'microfold' (M) cells, which sample antigen from the gut for presentation in secondary lymphoid tissues.

B cell antigen-presenting function

In addition to producing antibodies, B cells also express major histocompatiblity complex (MHC) class II molecules and can act as an antigen-presenting cell to CD4+ T cells. In mice such as the μMT/−/− mouse, altered protection might be ascribed to either loss of antibodies or failure of B cells to present antigen to T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strugnell, R., Wijburg, O. The role of secretory antibodies in infection immunity. Nat Rev Microbiol 8, 656–667 (2010). https://doi.org/10.1038/nrmicro2384

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing