Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuregulin 1 in neural development, synaptic plasticity and schizophrenia

Key Points

  • Schizophrenia is a highly debilitating mental disorder that affects 1% of the general population, yet it continues to be poorly understood. The genes that encode neuregulin 1 (NRG1) and its receptor ErbB4 are both schizophrenia susceptibility genes.

  • NRG1 is a trophic factor that contains an epidermal growth factor (EGF)-like domain, and its receptors are ErbB receptor tyrosine kinases. Pro-NRG1 is a transmembrane protein from which diffusible mature NRG1 is released by proteolytic cleavage. The expression and maturation of NRG1 are controlled by neuronal activity.

  • NRG1 signalling is complex and can be bidirectional. In canonical forward signalling, NRG1 stimulates the Raf–MEK–ERK and PI3K–Akt–S6K pathways. In non-canonical forward signalling, ErbB4 undergoes proteolytic cleavage to release an intracellular domain that can travel to the nucleus to regulate gene expression. In backward signalling, ErbB4 or its diffusible extracellular domain can serve as a ligand for pro-NRG1. The intracellular domain of pro-NRG1 has been implicated in transcription regulation.

  • NRG1–ErbB signalling has been implicated in the proliferation of neuronal progenitors and many other processes of neural development, including neuron migration and survival, axon guidance, glial development and myelination, and synapse formation.

  • NRG1 is expressed in multiple regions in the adult brain and regulates neurotransmission and synaptic plasticity. ErbB4 is localized at the postsynaptic density (PSD) of glutamatergic synapses, presumably by interacting with the PSD protein PSD95. NRG1 suppresses the induction and expression of long-term potentiation in the hippocampus. In addition, ErbB4 is enriched in GABA (γ-aminobutyric acid)-ergic neurons and present at their presynaptic terminals. NRG1 enhances depolarization-dependent release of GABA.

  • Mutations in NRG1 and ERBB4 have been associated with schizophrenia in multiple populations. Studies of Nrg1- and Erbb4-mutant mice have provided support for the potential role of loss-of-function mutations in these genes as risk factors for schizophrenia. Nrg1- and Erbb4-hypomorphic or conditional-knockout mice show 'schizophrenic-like' deficits and are generally hyperactive.

  • Most genetic variants of NRG1 and ERBB4 are intronic or synonymous exonic substitutions or are located in 5′ or 3′ non-coding regions. It is believed that they might alter the expression of NRG1 and ErbB4 protein isoforms at the level of transcription and/or splicing. Expression of CYT-1 ErbB4 and Type I NRG1 and/or NRG1 signalling is enhanced in the hippocampus and prefrontal cortex of patients with schizophrenia.

Abstract

Schizophrenia is a highly debilitating mental disorder that affects 1% of the general population, yet it continues to be poorly understood. Recent studies have identified variations in several genes that are associated with this disorder in diverse populations, including those that encode neuregulin 1 (NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to schizophrenia might eventually lead to the development of more effective therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different types of NRG1.
Figure 2: Canonical NRG1–ErbB signalling pathways.
Figure 3: Domain structures of four different ErbB4 isoforms.
Figure 4: Backward and non-canonical NRG1–ErbB4 signalling.
Figure 5: Roles of NRG1 in neural development.
Figure 6: NRG1 regulation of synaptic plasticity at excitatory and inhibitory synapses.
Figure 7: The structures of NRG1 and ERBB4 and their associated single nucleotide polymorphisms (SNPs).

Similar content being viewed by others

References

  1. Carlsson, A. & Lindqvist, M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. 20, 140–144 (1963).

    CAS  Google Scholar 

  2. Laruelle, M. & Abi-Dargham, A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371 (1999).

    CAS  PubMed  Google Scholar 

  3. Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68 (2005).

    CAS  PubMed  Google Scholar 

  4. Tan, W. et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J. Biol. Chem. 282, 24343–24351 (2007).

    CAS  PubMed  Google Scholar 

  5. Falls, D. L. Neuregulins: functions, forms, and signalling strategies. Exp. Cell Res. 284, 14–30 (2003).

    CAS  PubMed  Google Scholar 

  6. Steinthorsdottir, V. et al. Multiple novel transcription initiation sites for NRG1. Gene 342, 97–105 (2004).

    CAS  PubMed  Google Scholar 

  7. Meyer, D. et al. Isoform-specific expression and function of neuregulin. Development 124, 3575–3586 (1997). This study was the first to show that NRG1 isoforms have distinct functions in neural development. Type I NRG1 is required for the generation of neural-crest-derived neurons in the cranial ganglia, whereas Type III NRG1 has an important role in glial-cell development.

    CAS  PubMed  Google Scholar 

  8. Harrison, P. J. & Law, A. J. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol. Psychiatry 60, 132–140 (2006).

    CAS  PubMed  Google Scholar 

  9. Peles, E. et al. Isolation of the Neu/HER-2 stimulatory ligand: a 44 kd glycoprotein that induces differentiation of mammary tumour cells. Cell 69, 205–216 (1992).

    CAS  PubMed  Google Scholar 

  10. Holmes, W. E. et al. Identification of heregulin, a specific activator of p185erbB2. Science 256, 1205–1210 (1992).

    CAS  PubMed  Google Scholar 

  11. Jessell, T. M., Siegel, R. E. & Fischbach, G. D. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc. Natl Acad. Sci. USA 76, 5397–5401 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Falls, D. L., Rosen, K. M., Corfas, G., Lane, W. S. & Fischbach, G. D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the Neu ligand family. Cell 72, 801–815 (1993).

    CAS  PubMed  Google Scholar 

  13. Raff, M. C., Abney, E., Brockes, J. P. & Hornby-Smith, A. Schwann cell growth factors. Cell 15, 813–822 (1978).

    CAS  PubMed  Google Scholar 

  14. Lemke, G. E. & Brockes, J. P. Identification and purification of glial growth factor. J. Neurosci. 4, 75–83 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marchionni, M. A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).

    CAS  PubMed  Google Scholar 

  16. Carraway, K. L. et al. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinase. Nature 387, 512–516 (1997).

    CAS  PubMed  Google Scholar 

  17. Fischbach, G. D. & Rosen, K. M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997).

    CAS  PubMed  Google Scholar 

  18. Kramer, R. et al. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proc. Natl Acad. Sci. USA 93, 4833–4838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Loeb, J. A., Susanto, E. T. & Fischbach, G. D. The neuregulin precursor proARIA is processed to ARIA after expression on the cell surface by a protein kinase C-enhanced mechanism. Mol. Cell. Neurosci. 11, 77–91 (1998).

    CAS  PubMed  Google Scholar 

  20. Montero, J. C. et al. The extracellular linker of pro-neuregulin-α2c is required for efficient sorting and juxtacrine function. Mol. Biol. Cell 18, 380–393 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nature Neurosci. 9, 1520–1525 (2006).

    CAS  PubMed  Google Scholar 

  22. Willem, M. et al. Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664–666 (2006).

    CAS  PubMed  Google Scholar 

  23. Yokozeki, T. et al. Meltrin β (ADAM19) mediates ectodomain shedding of Neuregulin β1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells 12, 329–343 (2007).

    CAS  PubMed  Google Scholar 

  24. Bao, J., Wolpowitz, D., Role, L. W. & Talmage, D. A. Back signalling by the Nrg-1 intracellular domain. J. Cell Biol. 161, 1133–1141 (2003). This was the first report to indicate a role for NRG1 in backward signalling. Binding of the extracellular domains of ErbB receptors and NRG1 elicits proteolytic release and the translocation of NRG1-ICD to the nucleus.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Eilam, R., Pinkas-Kramarski, R., Ratzkin, B. J., Segal, M. & Yarden, Y. Activity-dependent regulation of Neu differentiation factor/neuregulin expression in rat brain. Proc. Natl Acad. Sci. USA 95, 1888–1893 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, B. & Fischbach, G. D. Processing of ARIA and release from isolated nerve terminals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 411–416 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ozaki, M., Itoh, K., Miyakawa, Y., Kishida, H. & Hashikawa, T. Protein processing and releases of neuregulin-1 are regulated in an activity-dependent manner. J. Neurochem. 91, 176–188 (2004).

    CAS  PubMed  Google Scholar 

  28. Bublil, E. M. & Yarden, Y. The EGF receptor family: spearheading a merger of signalling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134 (2007).

    CAS  PubMed  Google Scholar 

  29. Tzahar, E. et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol. 16, 5276–5287 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A. & Carraway, K. L. Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc. Natl Acad. Sci. USA 91, 8132–8136 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerlai, R., Pisacane, P. & Erickson, S. Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioural tasks. Behav. Brain Res. 109, 219–227 (2000). This report was the first to link abnormal NRG1 signalling to behavioural deficits. Nrg1 hypomorphs, but not Erbb2 or Erbb3 hypomorphs, showed consistent hyperactivity in various behavioural tests.

    CAS  PubMed  Google Scholar 

  32. Gu, Z., Jiang, Q., Fu, A. K., Ip, N. Y. & Yan, Z. Regulation of NMDA receptors by neuregulin signalling in PFC. J. Neurosci. 25, 4974–4984 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, Y., Tao, Y. M., Woo, R. S., Xiong, W. C. & Mei, L. Stimulated ErbB4 internalization is necessary for neuregulin signalling in neurons. Biochem. Biophys. Res. Commun. 354, 505–510 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, X. L., Huang, Y. Z., Xiong, W. C. & Mei, L. Neuregulin-induced expression of the acetylcholine receptor requires endocytosis of ErbB receptors. Mol. Cell. Neurosci. 28, 335–346 (2005).

    CAS  PubMed  Google Scholar 

  35. Si, J., Wang, Q. & Mei, L. Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor ɛ-subunit. J. Neurosci. 19, 8489–8508 (1999).

    Google Scholar 

  36. Fu, A. K. et al. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nature Neurosci. 4, 374–381 (2001).

    CAS  PubMed  Google Scholar 

  37. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    CAS  Google Scholar 

  38. Bjarnadottir, M. et al. Neuregulin1 (NRG1) signalling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/− knock-outs compared with wild-type mice. J. Neurosci. 27, 4519–4529 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ni, C. Y., Murphy, M. P., Golde, T. E. & Carpenter, G. γ-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    CAS  PubMed  Google Scholar 

  40. Lee, H. J. et al. Presenilin-dependent γ-secretase-like intramembrane cleavage of ErbB4. J. Biol. Chem. 277, 6318–6323 (2002).

    CAS  PubMed  Google Scholar 

  41. Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signalling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006). This report showed evidence that ErbB4-ICD, which is released by presenilin-dependent cleavage, regulates gene transcription and cell fate by forming a complex with other regulators.

    CAS  PubMed  Google Scholar 

  42. Fox, I. J. & Kornblum, H. I. Developmental profile of ErbB receptors in murine central nervous system: implications for functional interactions. J. Neurosci. Res. 79, 584–597 (2005).

    CAS  PubMed  Google Scholar 

  43. Bao, J. et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nature Neurosci. 7, 1250–1258 (2004).

    CAS  PubMed  Google Scholar 

  44. Harrison, P. J. Schizophrenia: a disorder of neurodevelopment? Curr. Opin. Neurobiol. 7, 285–289 (1997).

    CAS  PubMed  Google Scholar 

  45. Corfas, G., Rosen, K. M., Aratake, H., Krauss, R. & Fischbach, G. D. Differential expression of ARIA isoforms in the rat brain. Neuron 14, 103–115 (1995).

    CAS  PubMed  Google Scholar 

  46. Steiner, H., Blum, M., Kitai, S. T. & Fedi, P. Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp. Neurol. 159, 494–503 (1999).

    CAS  PubMed  Google Scholar 

  47. Liu, Y., Ford, B. D., Mann, M. A. & Fischbach, G. D. Neuregulin-1 increases the proliferation of neuronal progenitors from embryonic neural stem cells. Dev. Biol. 283, 437–445 (2005).

    CAS  PubMed  Google Scholar 

  48. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995). This report was the first to demonstrate that ErbB4 is an essential in vivo regulator of the development of the CNS.

    CAS  PubMed  Google Scholar 

  49. Lee, K. F. et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378, 394–398 (1995).

    CAS  PubMed  Google Scholar 

  50. Erickson, S. L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124, 4999–5011 (1997).

    CAS  PubMed  Google Scholar 

  51. Wolpowitz, D. et al. Cysteine-rich domain isoforms of the Neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91 (2000).

    CAS  PubMed  Google Scholar 

  52. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    CAS  PubMed  Google Scholar 

  53. Golding, J. P., Trainor, P., Krumlauf, R. & Gassmann, M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nature Cell Biol. 2, 103–109 (2000).

    CAS  PubMed  Google Scholar 

  54. Rio, C., Rieff, H. I., Qi, P., Khurana, T. S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).

    CAS  PubMed  Google Scholar 

  55. Anton, E. S., Marchionni, M. A., Lee, K. F. & Rakic, P. Role of GGF/neuregulin signalling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124, 3501–3510 (1997).

    CAS  PubMed  Google Scholar 

  56. Gierdalski, M., Sardi, S. P., Corfas, G. & Juliano, S. L. Endogenous neuregulin restores radial glia in a (ferret) model of cortical dysplasia. J. Neurosci. 25, 8498–8504 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmid, R. S. et al. Neuregulin 1-erbB2 signalling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl Acad. Sci. USA 100, 4251–4256 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yau, H. J., Wang, H. F., Lai, C. & Liu, F. C. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb. Cortex 13, 252–264 (2003).

    PubMed  Google Scholar 

  59. Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44, 251–261 (2004).

    CAS  PubMed  Google Scholar 

  60. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  PubMed  Google Scholar 

  61. Anton, E. S. et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nature Neurosci. 7, 1319–1328 (2004).

    CAS  PubMed  Google Scholar 

  62. Gerecke, K. M., Wyss, J. M. & Carroll, S. L. Neuregulin-1β induces neurite extension and arborization in cultured hippocampal neurons. Mol. Cell. Neurosci. 27, 379–393 (2004).

    CAS  PubMed  Google Scholar 

  63. Bermingham-McDonogh, O., McCabe, K. L. & Reh, T. A. Effects of GGF/neuregulins on neuronal survival and neurite outgrowth correlate with erbB2/neu expression in developing rat retina. Development 122, 1427–1438 (1996).

    CAS  PubMed  Google Scholar 

  64. Rieff, H. I. et al. Neuregulin induces GABAA receptor subunit expression and neurite outgrowth in cerebellar granule cells. J. Neurosci. 19, 10757–10766 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lopez-Bendito, G. et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127–142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gamett, D. C. & Cerione, R. A. Oncogenically activated or ligand-stimulated neu kinase stimulates neurite outgrowth in PC12 cells. FEBS Lett. 351, 335–339 (1994).

    CAS  PubMed  Google Scholar 

  67. Vaskovsky, A., Lupowitz, Z., Erlich, S. & Pinkas-Kramarski, R. ErbB-4 activation promotes neurite outgrowth in PC12 cells. J. Neurochem. 74, 979–987 (2000).

    CAS  PubMed  Google Scholar 

  68. Pinkas-Kramarski, R. et al. Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene 15, 2803–2815 (1997).

    CAS  PubMed  Google Scholar 

  69. Maroof, A. M. & Anderson, S. A. Off on a tangent: thalamocortical axons traverse a permissive corridor across the basal telencephalon. Neuron 50, 185–188 (2006).

    CAS  PubMed  Google Scholar 

  70. Ho, W. H., Armanini, M. P., Nuijens, A., Phillips, H. S. & Osheroff, P. L. Sensory and motor neuron-derived factor. A novel heregulin variant highly expressed in sensory and motor neurons. J. Biol. Chem. 270, 14523–14532 (1995).

    CAS  PubMed  Google Scholar 

  71. Garratt, A. N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22, 987–996 (2000).

    CAS  PubMed  Google Scholar 

  72. Nave, K. A. & Salzer, J. L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    CAS  PubMed  Google Scholar 

  73. Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    CAS  PubMed  Google Scholar 

  74. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P. & Anderson, D. J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360 (1994).

    CAS  PubMed  Google Scholar 

  76. Lai, C. & Feng, L. Implication of γ-secretase in neuregulin-induced maturation of oligodendrocytes. Biochem. Biophys. Res. Commun. 314, 535–542 (2004).

    CAS  PubMed  Google Scholar 

  77. Dong, Z. et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15, 585–596 (1995).

    CAS  PubMed  Google Scholar 

  78. Grinspan, J. B., Marchionni, M. A., Reeves, M., Coulaloglou, M. & Scherer, S. S. Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J. Neurosci. 16, 6107–6118 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Winseck, A. K. et al. In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. J. Neurosci. 22, 4509–4521 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahanthappa, N. K., Anton, E. S. & Matthew, W. D. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J. Neurosci. 16, 4673–4683 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Scherer, S. S. et al. Connexin32 is a myelin-related protein in the PNS and CNS. J. Neurosci. 15, 8281–8294 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Trachtenberg, J. T. & Thompson, W. J. Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379, 174–177 (1996).

    CAS  PubMed  Google Scholar 

  83. Adlkofer, K. & Lai, C. Role of neuregulins in glial cell development. Glia 29, 104–111 (2000).

    CAS  PubMed  Google Scholar 

  84. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–730 (1997).

    CAS  PubMed  Google Scholar 

  85. Woldeyesus, M. T. et al. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev. 13, 2538–2548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, S. et al. Neuregulin 1-erbB signalling is necessary for normal myelination and sensory function. J. Neurosci. 26, 3079–3086 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, S. et al. Disruption of ErbB receptor signalling in adult non-myelinating Schwann cells causes progressive sensory loss. Nature Neurosci. 6, 1186–1193 (2003).

    CAS  PubMed  Google Scholar 

  88. Fernandez, P. A. et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28, 81–90 (2000).

    CAS  PubMed  Google Scholar 

  89. Canoll, P. D. et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229–243 (1996).

    CAS  PubMed  Google Scholar 

  90. Flores, A. I. et al. Akt-mediated survival of oligodendrocytes induced by neuregulins. J. Neurosci. 20, 7622–7630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vartanian, T., Corfas, G., Li, Y., Fischbach, G. D. & Stefansson, K. A role for the acetylcholine receptor-inducing protein ARIA in oligodendrocyte development. Proc. Natl Acad. Sci. USA 91, 11626–11630 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vartanian, T., Fischbach, G. & Miller, R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc. Natl Acad. Sci. USA 96, 731–735 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, J. Y., Sun, Q., Oglesbee, M. & Yoon, S. O. The role of ErbB2 signalling in the onset of terminal differentiation of oligodendrocytes in vivo. J. Neurosci. 23, 5561–5571 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Roy, K. et al. Loss of erbB signalling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc. Natl Acad. Sci. USA 104, 8131–8136 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Park, S. K., Solomon, D. & Vartanian, T. Growth factor control of CNS myelination. Dev. Neurosci. 23, 327–337 (2001).

    CAS  PubMed  Google Scholar 

  96. Schmucker, J. et al. erbB3 is dispensable for oligodendrocyte development in vitro and in vivo. Glia 44, 67–75 (2003).

    PubMed  Google Scholar 

  97. Si, J., Miller, D. S. & Mei, L. Identification of an element required for acetylcholine receptor-inducing activity (ARIA)-induced expression of the acetylcholine receptor epsilon subunit gene. J. Biol. Chem. 272, 10367–10371 (1997).

    CAS  PubMed  Google Scholar 

  98. Si, J., Luo, Z. & Mei, L. Induction of acetylcholine receptor gene expression by ARIA requires activation of mitogen-activated protein kinase. J. Biol. Chem. 271, 19752–19759 (1996).

    CAS  PubMed  Google Scholar 

  99. Altiok, N., Altiok, S. & Changeux, J. P. Heregulin-stimulated acetylcholine receptor gene expression in muscle: requirement for MAP kinase and evidence for a parallel inhibitory pathway independent of electrical activity. EMBO J. 16, 717–725 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tansey, M. G., Chu, G. C. & Merlie, J. P. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway. J. Cell Biol. 134, 465–476 (1996).

    CAS  PubMed  Google Scholar 

  101. Sandrock, A. W. et al. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276, 599–603 (1997).

    PubMed  Google Scholar 

  102. Escher, P. et al. Synapses form in skeletal muscles lacking neuregulin receptors. Science 308, 1920–1923 (2005).

    CAS  PubMed  Google Scholar 

  103. Lin, W. et al. Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc. Natl Acad. Sci. USA 97, 1299–1304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Morris, J. K. et al. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23, 273–283 (1999).

    CAS  PubMed  Google Scholar 

  105. Hippenmeyer, S. et al. A role for neuregulin1 signalling in muscle spindle differentiation. Neuron 36, 1035–1049 (2002).

    CAS  PubMed  Google Scholar 

  106. Liu, Y., Ford, B., Mann, M. A. & Fischbach, G. D. Neuregulins increase α7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J. Neurosci. 21, 5660–5669 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, X., Kuo, Y., Devay, P., Yu, C. & Role, L. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 20, 255–270 (1998).

    CAS  PubMed  Google Scholar 

  108. Okada, M. & Corfas, G. Neuregulin1 downregulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus 14, 337–344 (2004).

    CAS  PubMed  Google Scholar 

  109. Ozaki, M., Sasner, M., Yano, R., Lu, H. S. & Buonanno, A. Neuregulin-β induces expression of an NMDA-receptor subunit. Nature 390, 691–694 (1997).

    CAS  PubMed  Google Scholar 

  110. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002). This was the first report to identify SNPs and microsatellites in NRG1 as being associated with schizophrenia.

    PubMed  PubMed Central  Google Scholar 

  111. Li, B., Woo, R. S., Mei, L. & Malinow, R. The neuregulin-1 receptor ErbB4 controls glutamatergic synapse maturation and plasticity. Neuron 54, 583–597 (2007). In this study, the roles of NRG1 and ErbB4 in the formation and maturation of glutamatergic synapses were investigated by gain and loss of function in cultured postnatal hippocampal slices. Evidence was shown that NRG1–ErbB4 signalling is essential for synapse maturation and plasticity.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Woo, R. S. et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54, 599–610 (2007). This paper provided evidence that NRG1 enhances activity-dependent GABA release through ErbB4 that is present in GABAergic terminals.

    CAS  PubMed  Google Scholar 

  113. Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991).

    CAS  PubMed  Google Scholar 

  114. Harrison, P. J. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl.) 174, 151–162 (2004).

    CAS  Google Scholar 

  115. Lewis, D. A. & Moghaddam, B. Cognitive dysfunction in schizophrenia: convergence of γ-aminobutyric acid and glutamate alterations. Arch. Neurol. 63, 1372–1376 (2006).

    PubMed  Google Scholar 

  116. Moghaddam, B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology (Berl.) 174, 39–44 (2004).

    CAS  Google Scholar 

  117. Tsai, G. & Coyle, J. T. Glutamatergic mechanisms in schizophrenia. Annu. Rev. Pharmacol. Toxicol. 42, 165–179 (2002).

    CAS  PubMed  Google Scholar 

  118. Huang, Y. Z. et al. Regulation of neuregulin signalling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443–455 (2000). This paper and reference 119 were the first to show that ErbB4 interacts and colocalizes with PSD95 in cultured neurons. In addition, this paper provided the first evidence that NRG1 suppresses LTP in the hippocampus and that interaction with PSD95 facilitates NRG1 signalling.

    CAS  PubMed  Google Scholar 

  119. Garcia, R. A. G., Vasudevan, K. & Buonanno, A. The neuregulin receptor ErbB4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl Acad. Sci. USA 97, 3596–3601 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma, L. et al. Ligand-dependent recruitment of the ErbB4 signalling complex into neuronal lipid rafts. J. Neurosci. 23, 3164–3175 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pitcher, G. M., Beggs, S., Woo, R. S., Mei, L. & Salter, M. W. ErbB4 is a suppressor of long-term potentiation in the adult hippocampus. Neuroreport 19, 139–143 (2008). This paper used pharmacological and genetic approaches to demonstrate the essential role of ErbB4 in the suppression of LTP by NRG1.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kwon, O. B., Longart, M., Vullhorst, D., Hoffman, D. A. & Buonanno, A. Neuregulin-1 reverses long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 25, 9378–9383 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Role, L. W. & Talmage, D. A. Neurobiology: new order for thought disorders. Nature 448, 263–265 (2007).

    CAS  PubMed  Google Scholar 

  124. Iyengar, S. S. & Mott, D. D. Neuregulin blocks synaptic strengthening after epileptiform activity in the rat hippocampus. Brain Res. 29 Feb 2008 [epub ahead of print].

  125. Wang, Y. T. & Salter, M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    CAS  PubMed  Google Scholar 

  126. Yu, X. M., Askalan, R., Keil, G. J. & Salter, M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    CAS  PubMed  Google Scholar 

  127. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    CAS  PubMed  Google Scholar 

  128. Roysommuti, S., Carroll, S. L. & Wyss, J. M. Neuregulin-1β modulates in vivo entorhinal-hippocampal synaptic transmission in adult rats. Neuroscience 121, 779–785 (2003).

    CAS  PubMed  Google Scholar 

  129. Fischbach, G. D. NRG1 and synaptic function in the CNS. Neuron 54, 495–497 (2007).

    CAS  PubMed  Google Scholar 

  130. Belan, P. V. & Kostyuk, P. G. Glutamate-receptor-induced modulation of GABAergic synaptic transmission in the hippocampus. Pflugers Arch. 444, 26–37 (2002).

    CAS  PubMed  Google Scholar 

  131. Xie, F., Raetzman, L. T. & Siegel, R. E. Neuregulin induces GABAA receptor β2 subunit expression in cultured rat cerebellar granule neurons by activating multiple signalling pathways. J. Neurochem. 90, 1521–1529 (2004).

    CAS  PubMed  Google Scholar 

  132. Cameron, J. S., Dryer, L. & Dryer, S. E. β-neuregulin-1 is required for the in vivo development of functional Ca2+-activated K+ channels in parasympathetic neurons. Proc. Natl Acad. Sci. USA 98, 2832–2836 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Subramony, P. & Dryer, S. E. Neuregulins stimulate the functional expression of Ca2+-activated K+ channels in developing chicken parasympathetic neurons. Proc. Natl Acad. Sci. USA 94, 5934–5938 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Li, B. S. et al. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J. Biol. Chem. 278, 35702–35709 (2003).

    CAS  PubMed  Google Scholar 

  135. Ricart, K. et al. Interactions between β-neuregulin and neurotrophins in motor neuron apoptosis. J. Neurochem. 97, 222–233 (2006).

    CAS  PubMed  Google Scholar 

  136. Zhang, L. et al. Neurotrophic and neuroprotective effects of the neuregulin glial growth factor-2 on dopaminergic neurons in rat primary midbrain cultures. J. Neurochem. 91, 1358–1368 (2004).

    CAS  PubMed  Google Scholar 

  137. Stankovic, K. et al. Survival of adult spiral ganglion neurons requires erbB receptor signalling in the inner ear. J. Neurosci. 24, 8651–8661 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Goldshmit, Y., Erlich, S. & Pinkas-Kramarski, R. Neuregulin rescues PC12-ErbB4 cells from cell death induced by H2O2. Regulation of reactive oxygen species levels by phosphatidylinositol 3-kinase. J. Biol. Chem. 276, 46379–46385 (2001).

    CAS  PubMed  Google Scholar 

  139. Li, Y. et al. Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Res. 1184, 277–283 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Shyu, W. C. et al. Neuregulin-1 reduces ischemia-induced brain damage in rats. Neurobiol. Aging 25, 935–944 (2004).

    CAS  PubMed  Google Scholar 

  141. Croslan, D. R. et al. Neuroprotective effects of neuregulin-1 on B35 neuronal cells following ischemia. Brain Res. 4 Mar 2008 [epub ahead of print].

  142. Badner, J. A. & Gershon, E. S. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol. Psychiatry 7, 405–411 (2002).

    CAS  PubMed  Google Scholar 

  143. Lewis, C. M. et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am. J. Hum. Genet. 73, 34–48 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, J. Z. et al. Association study of neuregulin 1 gene with schizophrenia. Mol. Psychiatry 8, 706–709 (2003). Using the polymerase-chain-reaction-based restriction-fragment length polymorphism method and denaturing high-performance liquid chromatography, this independent study identified two additional NRG1 SNPs that are associated with schizophrenia in 246 Chinese Han schizophrenic family trios.

    CAS  PubMed  Google Scholar 

  145. Kim, J. W. et al. Linkage and association of schizophrenia with genetic variations in the locus of neuregulin 1 in Korean population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 281–286 (2006).

    Google Scholar 

  146. Hall, D., Gogos, J. A. & Karayiorgou, M. The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes Brain Behav. 3, 240–248 (2004).

    CAS  PubMed  Google Scholar 

  147. Stefansson, H. et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am. J. Hum. Genet. 72, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  148. Williams, N. M. et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol. Psychiatry 8, 485–487 (2003).

    CAS  PubMed  Google Scholar 

  149. Bakker, S. C. et al. Neuregulin 1: genetic support for schizophrenia subtypes. Mol. Psychiatry 9, 1061–1063 (2004).

    CAS  PubMed  Google Scholar 

  150. Li, T. et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol. Psychiatry 9, 698–704 (2004).

    CAS  PubMed  Google Scholar 

  151. Tang, J. X. et al. Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol. Psychiatry 9, 11–12 (2004).

    CAS  PubMed  Google Scholar 

  152. Petryshen, T. L. et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol. Psychiatry 10, 366–374, 328 (2005).

    CAS  PubMed  Google Scholar 

  153. Corvin, A. P. et al. Confirmation and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol. Psychiatry 9, 208–213 (2004).

    CAS  PubMed  Google Scholar 

  154. Zhao, X. et al. A case control and family based association study of the neuregulin1 gene and schizophrenia. J. Med. Genet. 41, 31–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Benzel, I. et al. Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behav. Brain Funct. 3, 31 (2007).

    PubMed  PubMed Central  Google Scholar 

  156. Lachman, H. M. et al. Analysis of polymorphisms in AT-rich domains of neuregulin 1 gene in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 102–109 (2006).

    Google Scholar 

  157. Law, A. J. et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc. Natl Acad. Sci. USA 103, 6747–6752 (2006). In this study, Type I NRG1 mRNA was found to be upregulated in the hippocampus of patients with schizophrenia, suggesting that the association of NRG1 with schizophrenia might be mediated by altered expression of the gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Silberberg, G., Darvasi, A., Pinkas-Kramarski, R. & Navon, R. The involvement of ErbB4 with schizophrenia: association and expression studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 142–148 (2006). This paper compared the expression of ErbB4 isoforms in the dorsolateral prefrontal cortex (DLPFC) of controls and patients with schizophrenia and showed that the CYT-1 and JMa isoforms are overexpressed at the mRNA level in the DLPFC of schizophrenia patients.

    Google Scholar 

  159. Law, A. J., Kleinman, J. E., Weinberger, D. R. & Weickert, C. S. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum. Mol. Genet. 16, 129–141 (2007). This paper studied the expression of ErbB4 isoforms in the DLPFC and hippocampus of controls and patients with schizophrenia. The CYT-1 and JMa ErbB4 isoforms were increased in the DLPFC but not the hippocampus of the patients. This observation suggests that dysregulation of the splice-variant-specific expression of ErbB4 might be region-specific.

    CAS  PubMed  Google Scholar 

  160. Hall, J. et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neurosci. 9, 1477–1478 (2006).

    CAS  PubMed  Google Scholar 

  161. Thiselton, D. L. et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol. Psychiatry 9, 777–783 (2004).

    CAS  PubMed  Google Scholar 

  162. Iwata, N. et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol. Psychiatry 9, 126–127 (2004).

    CAS  PubMed  Google Scholar 

  163. Rosa, A. et al. Family-based association study of neuregulin-1 gene and psychosis in a Spanish sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144, 954–957 (2007).

    Google Scholar 

  164. Walss-Bass, C. et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol. Psychiatry 60, 548–553 (2006).

    CAS  PubMed  Google Scholar 

  165. Hong, L. E., Wonodi, I., Stine, O. C., Mitchell, B. D. & Thaker, G. K. Evidence of missense mutations on the neuregulin 1 gene affecting function of prepulse inhibition. Biol. Psychiatry 63, 17–23 (2007).

    PubMed  PubMed Central  Google Scholar 

  166. Lin, H. F. et al. Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychol. Med. 35, 1589–1598 (2005).

    PubMed  Google Scholar 

  167. Norton, N. et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 96–101 (2006).

    Google Scholar 

  168. Nicodemus, K. K. et al. Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol. Psychiatry 11, 1062–1065 (2006).

    CAS  PubMed  Google Scholar 

  169. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008). This study identified ERBB4 as one of the genes that is disrupted by the microdeletions and microduplications that are associated with schizophrenia.

    CAS  PubMed  Google Scholar 

  170. Arguello, P. A. & Gogos, J. A. Modeling madness in mice: one piece at a time. Neuron 52, 179–196 (2006).

    CAS  PubMed  Google Scholar 

  171. Golub, M. S., Germann, S. L. & Lloyd, K. C. Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav. Brain Res. 153, 159–170 (2004).

    CAS  PubMed  Google Scholar 

  172. O'Tuathaigh, C. M. et al. Phenotypic characterization of spatial cognition and social behaviour in mice with 'knockout' of the schizophrenia risk gene neuregulin 1. Neuroscience 147, 18–27 (2007).

    CAS  PubMed  Google Scholar 

  173. Rimer, M., Barrett, D. W., Maldonado, M. A., Vock, V. M. & Gonzalez-Lima, F. Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport 16, 271–275 (2005).

    CAS  PubMed  Google Scholar 

  174. Thuret, S. et al. The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. J. Neurochem. 91, 1302–1311 (2004).

    CAS  PubMed  Google Scholar 

  175. Savonenko, A. V. et al. Alteration of BACE1-dependent NRG1/ErbB4 signalling and schizophrenia-like phenotypes in BACE1-null mice. Proc. Natl Acad. Sci. USA 105, 5585–5590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signalling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lipska, B. K. Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J. Psychiatry Neurosci. 29, 282–286 (2004).

    PubMed  PubMed Central  Google Scholar 

  178. Lewis, D. A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    CAS  PubMed  Google Scholar 

  179. Hashimoto, R. et al. Expression analysis of neuregulin-1 in the dorsolateral PFC in schizophrenia. Mol. Psychiatry 9, 299–307 (2004). This study was the first to show that Type I NRG1 expression is increased in the DLPFC of patients with schizophrenia and positively correlates with antipsychotic medication dosage.

    CAS  PubMed  Google Scholar 

  180. Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA 98, 4746–4751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sugai, T. et al. Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann. NY Acad. Sci. 1025, 84–91 (2004).

    CAS  PubMed  Google Scholar 

  182. Hahn, C. G. et al. Altered neuregulin 1-erbB4 signalling contributes to NMDA receptor hypofunction in schizophrenia. Nature Med. 12, 824–828 (2006). This paper showed that there is a marked increase in NRG1-induced activation of ErbB4, ERK and Akt and in the ErbB4–PSD95 interaction in the PFC in schizophrenia, accompanied by a reduction in tyrosine phosphorylation of NMDAR2A in response to NMDA stimulation. These findings suggest that enhanced NRG1 signalling might contribute to NMDA hypofunction in schizophrenia.

    CAS  PubMed  Google Scholar 

  183. Chong, V. Z. et al. Elevated neuregulin-1 and ErbB4 protein in the PFC of schizophrenic patients. Schizophr. Res. 100, 270–280 (2008).

    PubMed  PubMed Central  Google Scholar 

  184. Kalkman, H. O. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol. Ther. 110, 117–134 (2006).

    CAS  PubMed  Google Scholar 

  185. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).

    CAS  Google Scholar 

  186. Norton, N., Williams, H. J. & Owen, M. J. An update on the genetics of schizophrenia. Curr. Opin. Psychiatry 19, 158–164 (2006).

    PubMed  Google Scholar 

  187. Elenius, K. et al. A novel juxtamembrane domain isoform of HER4/ErbB4. Isoform-specific tissue distribution and differential processing in response to phorbol ester. J. Biol. Chem. 272, 26761–26768 (1997).

    CAS  PubMed  Google Scholar 

  188. Sawyer, C., Hiles, I., Page, M., Crompton, M. & Dean, C. Two erbB-4 transcripts are expressed in normal breast and in most breast cancers. Oncogene 17, 919–924 (1998).

    CAS  PubMed  Google Scholar 

  189. Junttila, T. T., Sundvall, M., Maatta, J. A. & Elenius, K. Erbb4 and its isoforms: selective regulation of growth factor responses by naturally occurring receptor variants. Trends Cardiovasc. Med. 10, 304–310 (2000).

    CAS  PubMed  Google Scholar 

  190. Rio, C., Buxbaum, J. D., Peschon, J. J. & Corfas, G. Tumour necrosis factor-α-converting enzyme is required for cleavage of erbB4/HER4. J. Biol. Chem. 275, 10379–10387 (2000).

    CAS  PubMed  Google Scholar 

  191. Cheng, Q. C., Tikhomirov, O., Zhou, W. & Carpenter, G. Ectodomain cleavage of ErbB-4: characterization of the cleavage site and m80 fragment. J. Biol. Chem. 278, 38421–38427 (2003).

    CAS  PubMed  Google Scholar 

  192. Arasada, R. R. & Carpenter, G. Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. J. Biol. Chem. 280, 30783–30787 (2005).

    CAS  PubMed  Google Scholar 

  193. Feng, S. M. et al. The HER4 cytoplasmic domain, but not its C terminus, inhibits mammary cell proliferation. Mol. Endocrinol. 21, 1861–1876 (2007).

    CAS  PubMed  Google Scholar 

  194. Linggi, B. & Carpenter, G. ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. J. Biol. Chem. 281, 25373–25380 (2006).

    CAS  PubMed  Google Scholar 

  195. Omerovic, J. et al. Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level. Exp. Cell Res. 294, 469–479 (2004).

    CAS  PubMed  Google Scholar 

  196. Vidal, G. A., Naresh, A., Marrero, L. & Jones, F. E. Presenilin-dependent γ-secretase processing regulates multiple ERBB4/HER4 activities. J. Biol. Chem. 280, 19777–19783 (2005).

    CAS  PubMed  Google Scholar 

  197. Komuro, A., Nagai, M., Navin, N. E. & Sudol, M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J. Biol. Chem. 278, 33334–33341 (2003).

    CAS  PubMed  Google Scholar 

  198. Wang, J. Y., Wigston, D. J., Rees, H. D., Levey, A. I. & Falls, D. L. LIM kinase 1 accumulates in presynaptic terminals during synapse maturation. J. Comp. Neurol. 416, 319–334 (2000).

    CAS  PubMed  Google Scholar 

  199. Wang, J. Y., Frenzel, K. E., Wen, D. & Falls, D. L. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J. Biol. Chem. 273, 20525–20534 (1998).

    CAS  PubMed  Google Scholar 

  200. Liu, X. et al. Domain-specific gene disruption reveals critical regulation of neuregulin signalling by its cytoplasmic tail. Proc. Natl Acad. Sci. USA 95, 13024–13029 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Sherman, D. L. & Brophy, P. J. Mechanisms of axon ensheathment and myelin growth. Nature Rev. Neurosci. 6, 683–690 (2005).

    CAS  Google Scholar 

  202. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nature Rev. Neurosci. 5, 771–781 (2004).

    CAS  Google Scholar 

  203. Craig, A. M. & Kang, Y. Neurexin-neuroligin signalling in synapse development. Curr. Opin. Neurobiol. 17, 43–52 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Huang, Y. Z., Wang, Q., Xiong, W. C. & Mei, L. Erbin is a protein concentrated at postsynaptic membranes that interacts with PSD-95. J. Biol. Chem. 276, 19318–19326 (2001).

    CAS  PubMed  Google Scholar 

  205. Borg, J. P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol. 2, 407–414 (2000).

    CAS  PubMed  Google Scholar 

  206. Huang, Y. Z., Zang, M., Xiong, W. C., Luo, Z. & Mei, L. Erbin suppresses the MAP kinase pathway. J. Biol. Chem. 278, 1108–1114 (2003).

    CAS  PubMed  Google Scholar 

  207. Dai, P., Xiong, W. C. & Mei, L. Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J. Biol. Chem. 281, 927–933 (2006).

    CAS  PubMed  Google Scholar 

  208. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004).

    CAS  Google Scholar 

  209. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    CAS  PubMed  Google Scholar 

  210. Kawaguchi, Y. & Kubota, Y. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677–701 (1998).

    CAS  PubMed  Google Scholar 

  211. Zaitsev, A. V. et al. Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral PFC. Cereb. Cortex 15, 1178–1186 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Lai, M. Salter, B. Li, G. Pitcher and C. Bergson for critical reading of the Review, the anonymous reviewers for their comments and critiques, X. Liu, Y. Tao, X. Li and A. Ting for comments and suggestions, and X. Liu and X. Cao for figure preparation. The work of the authors' laboratories was supported in part by grants from the National Institute of Mental Health, the National Institute for Neurological Disorders and Stroke and the National Alliance for Research on Schizophrenia and Depression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Mei.

Related links

Related links

DATABASES

OMIM

Schizophrenia

FURTHER INFORMATION

Lin Mei's homepage

Glossary

Antipsychotics

Drugs that are used to treat psychosis, often in people with schizophrenia.

Postsynaptic density

An electron-dense region of the postsynaptic membrane that is comprised of glutamate receptors, signalling and scaffolding proteins and cytoskeletal and cell-adhesion molecules.

Mesenchyme

Mesodermic embryonic undifferentiated tissue that will differentiate into blood, blood vessels, smooth muscle and connective tissue.

Radial migration

The migration of newly formed neurons from the ventricular zone, where they differentiate, to the neocortex, which they then laminate. The neurons are thought to migrate on tracks formed by radial glia.

Tangential migration

A mode of neuron migration that is non-radial. Most interneurons migrate tangentially.

Rostral migratory stream

(RMS). A pathway by which neuronal precursors formed in the subventricular zone migrate to the olfactory bulb.

Axon guidance

A process in which axons find their target cells.

Myelination

A process by which axons become ensheathed with myelin, which permits the rapid transmission of action potentials.

Long-term potentiation

(LTP). A persistent increase in synaptic strength following electrical or chemical stimulation. It is believed to be a cellular mechanism that underlies learning and memory.

Working memory

The ability to remember information over a short period of time. It is believed to be executed by the prefrontal cortex, the anterior cingulate cortex and parts of the basal ganglia.

Executive function

A set of cognitive abilities that connect past experiences with present actions, allowing the formation of concepts and abstract thought.

Inhibitory postsynaptic currents.

(IPSCs). Synaptic currents elicited by GABA or glycine (both of which are inhibitory neurotransmitters) that can inhibit the formation of action potentials.

Haplotype

A combination of genetically linked markers that are present on one chromosome and are transmitted together.

Single nucleotide polymorphism

(SNP). A DNA sequence variation in which a single nucleotide in the genome is altered. SNPs can occur in coding as well as non-coding regions of DNA.

Pre-pulse inhibition

(PPI). A reduction in the magnitude of the startle reflex that occurs when an organism is presented with a non-startling stimulus (a prepulse) before being presented with the startling stimulus. Deficits in PPI have been observed in patients with schizophrenia.

Schizotypal personality

A condition that is characterized by discomfort with close relationships and by eccentric beliefs and behaviours.

Anhedonia

The inability to experience pleasure from enjoyable life events. It is recognized as a key symptom of depression.

Open-field test

A behavioural analysis that measures locomotor activity, hyperactivity, exploratory behaviours and anxiety.

Glutamic acid decarboxylase

(GAD). An enzyme that is essential for GABA synthesis. It catalyses the decarboxylation of glutamate to produce GABA and CO2. In mammals there are two GAD isoforms: GAD67 and GAD65, which are encoded by GAD1 and GAD2, respectively.

Parvalbumin

A Ca2+-binding protein that is expressed in a subset of GABAergic interneurons (and fast-contracting muscles).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, L., Xiong, WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9, 437–452 (2008). https://doi.org/10.1038/nrn2392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing