Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating albuminuria and GFR in the assessment of diabetic nephropathy

Abstract

The evaluation of diabetic nephropathy from research and clinical viewpoints depends on the assessment of two continuous variables, albumin excretion rate (AER) and glomerular filtration rate (GFR). These two parameters form the basis of both the European classification of five stages of diabetic nephropathy, assessed according to changes in AER and GFR (hyperfiltration, normoalbuminuria, microalbuminuria, macroalbuminuria and end-stage renal disease), and the National Kidney Foundation classification of five stages of chronic kidney disease based on categories of estimated GFR. Although increases in AER generally precede a decline in GFR, some patients follow a non-albuminuric pathway to renal impairment. In addition, studies indicate that GFR decreases in a linear fashion from normal or above-normal levels. Whether hyperfiltration is part of the pathogenetic process leading to diabetic nephropathy remains unclear. Ideally, both AER and GFR should be assessed at an early stage in patients being evaluated for diabetic nephropathy. New methods such as the use of cystatin-C-based equations for estimating GFR should be considered because current creatinine-based estimates are inaccurate at normal or high GFRs. Serial assessments of both AER and GFR might allow diabetic nephropathy to be diagnosed at early stages of the disease process that are selectively responsive to new interventions. The successful integration of AER categories with the recently defined stages of GFR represents a new challenge in the management of diabetic nephropathy.

Key Points

  • Both albumin excretion rate (AER) and glomerular filtration rate (GFR) should be assessed at an early stage in evaluating patients for diabetic nephropathy

  • In the assessment of diabetic nephropathy, the roles of AER and GFR are complementary rather than competitive

  • Changes in AER are dynamic whereas changes in GFR are usually progressive

  • Although increases in AER generally precede a decline in GFR, some patients follow a non-albuminuric pathway to renal impairment

  • The course of renal abnormalities in type 1 and type 2 diabetes is similar, but more heterogeneous in type 2 diabetes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of 301 patients with type 2 diabetes attending a single tertiary referral clinic divided according to GFR and AER.

Similar content being viewed by others

References

  1. Mogensen, C. E. et al. Microalbuminuria: an early marker of renal involvement in diabetes. Uremia Invest. 9, 85–95 (1985).

    Article  PubMed  Google Scholar 

  2. Mogensen, C. E. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia 42, 263–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39 (Suppl. 1), S1–S266 (2002).

  4. Viberti, G. C. et al. Microalbuminuria as a predictor of clinical nephropathy in insulin- dependent diabetes mellitus. Lancet 1, 1430–1432 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Parving, H. H., Oxenboll, B., Svendsen, P. A., Christiansen, J. S. & Andersen, A. R. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol. (Copenh.) 100, 550–555 (1982).

    Article  CAS  Google Scholar 

  6. Mogensen, C. E. & Christensen, C. K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med. 311, 89–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Mathiesen, E. R., Oxenboll, B., Johansen, K., Svendsen, P. A. & Deckert, T. Incipient nephropathy in type 1 (insulin-dependent) diabetes. Diabetologia 26, 406–410 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Mogensen, C. E. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N. Engl. J. Med. 310, 356–360 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Witte, E. C. et al. First morning voids are more reliable than spot urine samples to assess microalbuminuria. J. Am. Soc. Nephrol. 20, 436–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jerums, G., Cooper, M. E., Seeman, E., Murray, R. M. & McNeil, J. J. Spectrum of proteinuria in type I and type II diabetes. Diabetes Care 10, 419–427 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Cooper, M. E. et al. Progression of proteinuria in type 1 and type 2 diabetes. Diabet. Med. 5, 361–368 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Steinke, J. M. et al. The early natural history of nephropathy in type 1 diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 54, 2164–2171 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tabaei, B. P., Al-Kassab, A. S., Ilag, L. L., Zawacki, C. M. & Herman, W. H. Does microalbuminuria predict diabetic nephropathy? Diabetes Care 24, 1560–1566 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hovind, P. et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328, 1105 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Caramori, M. L., Fioretto, P. & Mauer, M. Enhancing the predictive value of urinary albumin for diabetic nephropathy. J. Am. Soc. Nephrol. 17, 339–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Perkins, B. A. et al. Regression of microalbuminuria in type 1 diabetes. N. Engl. J. Med. 348, 2285–2293 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Messent, J. W. et al. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int. 41, 836–839 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Mogensen, C. E. et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet 346, 1080–1084 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Dinneen, S. F. & Gerstein, H. C. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch. Intern. Med. 157, 1413–1418 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Forman, J. P. & Brenner, B. M. 'Hypertension' and 'microalbuminuria': the bell tolls for thee. Kidney Int. 69, 22–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ruggenenti, P. & Remuzzi, G. Time to abandon microalbuminuria? Kidney Int. 70, 1214–1222 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Levey, A. S. et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003).

    Article  PubMed  Google Scholar 

  23. Levey, A. S. et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 67, 2089–2100 (2005).

    Article  PubMed  Google Scholar 

  24. Amin, R. et al. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: The Oxford Regional Prospective Study. Kidney Int. 68, 1740–1749 (2005).

    Article  PubMed  Google Scholar 

  25. Myers, G. L. et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 52, 5–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Hasslacher, C., Ritz, E., Wahl, P. & Michael, C. Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol. Dial. Transplant. 4, 859–863 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Fioretto, P. et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 39, 1569–1576 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. American Diabetes Association. Standards of medical care in diabetes—2008. Diabetes Care 31 (Suppl. 1), S12–S54 (2008).

  29. Bakker, A. J. Detection of microalbuminuria. Receiver operating characteristic curve analysis favors albumin-to-creatinine ratio over albumin concentration. Diabetes Care 22, 307–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Houlihan, C. A., Tsalamandris, C., Akdeniz, A. & Jerums, G. Albumin to creatinine ratio: a screening test with limitations. Am. J. Kidney Dis. 39, 1183–1189 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Bauer, C., Melamed, M. L. & Hostetter, T. H. Staging of chronic kidney disease: time for a course correction. J. Am. Soc. Nephrol. 19, 844–846 (2008).

    Article  PubMed  Google Scholar 

  32. Feldt-Rasmussen, B., Dinesen, B. & Deckert, M. Enzyme immunoassay: an improved determination of urinary albumin in diabetics with incipient nephropathy. Scand. J. Clin. Lab. Invest. 45, 539–544 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. McHardy, K. C., Gann, M. E., Ross, I. S. & Pearson, D. W. A simple approach to screening for microalbuminuria in a type 1 (insulin-dependent) diabetic population. Ann. Clin. Biochem. 28, 450–455 (1991).

    Article  PubMed  Google Scholar 

  34. Harvey, J. N., Hood, K., Platts, J. K., Devarajoo, S. & Meadows, P. A. Prediction of albumin excretion rate from albumin-to-creatinine ratio. Diabetes Care 22, 1597–1598 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Mogensen, C. E. et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 18, 572–581 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Perkins, B. A. et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J. Am. Soc. Nephrol. 18, 1353–1361 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Perkins, B. A. & Krolewski, A. S. Early nephropathy in type 1 diabetes: a new perspective on who will and who will not progress. Curr. Diab. Rep. 5, 455–463 (2005).

    Article  PubMed  Google Scholar 

  38. Premaratne, E. et al. Serial measurements of cystatin C are more accurate than creatinine-based methods in detecting declining renal function in type 1 diabetes. Diabetes Care 31, 971–973 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Mann, J. F. et al. Progression of renal insufficiency in type 2 diabetes with and without microalbuminuria: results of the Heart Outcomes and Prevention Evaluation (HOPE) randomized study. Am. J. Kidney Dis. 42, 936–942 (2003).

    Article  PubMed  Google Scholar 

  40. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    Article  PubMed  Google Scholar 

  41. Jerums, G. et al. New and old markers of progression of diabetic nephropathy. Diabetes Res. Clin. Pract. 82 (Suppl. 1), S30–S37 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Parving, H. H., Hommel, E., Jensen, B. R. & Hansen, H. P. Long-term beneficial effect of ACE inhibition on diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int. 60, 228–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Bakris, G. L. & Weir, M. R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch. Intern. Med. 160, 685–693 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Yudkin, J. S., Forrest, R. D. & Jackson, C. A. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 2, 530–533 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Zandbergen, A. A. et al. Change in albuminuria is predictive of cardiovascular outcome in normotensive patients with type 2 diabetes and microalbuminuria. Diabetes Care 30, 3119–3121 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Deckert, T., Feldt-Rasmussen, B., Borch-Johnsen, K., Jensen, T. & Kofoed-Enevoldsen, A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32, 219–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    Article  PubMed  Google Scholar 

  52. de Zeeuw, D. Albuminuria, not only a cardiovascular/renal risk marker, but also a target for treatment? Kidney Int. Suppl. 66 (Suppl. 92s), S2–S6 (2004).

    Article  Google Scholar 

  53. Stevens, L., Greene, T. & Levey, A. Surrogate end points for clinical trials of kidney disease progression. Clin. J. Am. Soc. Nephrol. 1, 874–884 (2006).

    Article  PubMed  Google Scholar 

  54. Retnakaran, R., Cull, C. A., Thorne, K. I., Adler, A. I. & Holman, R. R. Risk factors for renal dysfunction in type 2 diabetes: U. K. Prospective Diabetes Study 74. Diabetes 55, 1832–1839 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Caramori, M. L., Fioretto, P. & Mauer, M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 49, 1399–1408 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Gaede, P., Tarnow, L., Vedel, P., Parving, H. H. & Pedersen, O. Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol. Dial. Transplant. 19, 2784–2788 (2004).

    Article  PubMed  Google Scholar 

  57. Araki, S. et al. Reduction in microalbuminuria as an integrated indicator for renal and cardiovascular risk reduction in patients with type 2 diabetes. Diabetes 56, 1727–1730 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Ibsen, H. et al. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension 45, 198–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Wilmer, W. A. et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am. J. Kidney Dis. 34, 308–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Lewis, J. B., Berl, T., Bain, R. P., Rohde, R. D. & Lewis, E. J. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy. Collaborative Study Group. Am. J. Kidney Dis. 34, 809–817 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Hovind, P., Rossing, P., Tarnow, L., Smidt, U. M. & Parving, H. H. Remission and regression in the nephropathy of type 1 diabetes when blood pressure is controlled aggressively. Kidney Int. 60, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Rudberg, S., Persson, B. & Dahlquist, G. Increased glomerular filtration rate as a predictor of diabetic nephropathy—an 8-year prospective study. Kidney Int. 41, 822–828 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Premaratne, E. et al. Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate. Diabetologia 48, 2486–2493 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Anavekar, N. S. et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med. 351, 1285–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. So, W. Y. et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care 29, 2046–2052 (2006).

    Article  PubMed  Google Scholar 

  68. Nag, S. et al. All-cause and cardiovascular mortality in diabetic subjects increases significantly with reduced estimated glomerular filtration rate (eGFR): 10 years' data from the South Tees Diabetes Mortality study. Diabet. Med. 24, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Mogensen, C. In The Kidney and Hypertension in Diabetes Mellitus (ed. Mogensen, C.) 883–938 (Taylor & Francis, London, 2006).

    Google Scholar 

  70. Rule, A. D. et al. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 141, 929–937 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Chaiken, R. L. et al. Hyperfiltration in African-American patients with type 2 diabetes. Cross-sectional and longitudinal data. Diabetes Care 21, 2129–2134 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Dahlquist, G., Stattin, E. L. & Rudberg, S. Urinary albumin excretion rate and glomerular filtration rate in the prediction of diabetic nephropathy; a long-term follow-up study of childhood onset type-1 diabetic patients. Nephrol. Dial. Transplant. 16, 1382–1386 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Cotroneo, P. et al. Hyperfiltration in patients with type I diabetes mellitus: a prevalence study. Clin. Nephrol. 50, 214–217 (1998).

    CAS  PubMed  Google Scholar 

  74. Mogensen, C. E. & Andersen, M. J. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia 11, 221–224 (1975).

    Article  CAS  PubMed  Google Scholar 

  75. Berg, U. B., Torbjornsdotter, T. B., Jaremko, G. & Thalme, B. Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia 41, 1047–1056 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Berg, U. & Thalme, B. Long-term renal function in children with type 1 diabetes and its relation to development of micro- and macroalbuminuria. Presented at the 20th Annual Meeting of the European Diabetic Nephropathy Study Group, 2007 May 11–12, Edinburgh, UK.

  77. Magee, G. M. et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52, 691–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Ficociello, L. H. et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care doi:10.2337/dc08-1560.

  79. Jones, S. L., Wiseman, M. J. & Viberti, G. C. Glomerular hyperfiltration as a risk factor for diabetic nephropathy: five-year report of a prospective study. Diabetologia 34, 59–60 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Rigalleau, V. et al. The Mayo Clinic quadratic equation improves the prediction of glomerular filtration rate in diabetic subjects. Nephrol. Dial. Transplant. 22, 813–818 (2007).

    Article  PubMed  Google Scholar 

  81. Perkins, B. A. et al. Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J. Am. Soc. Nephrol. 16, 1404–1412 (2005).

    Article  PubMed  Google Scholar 

  82. MacIsaac, R. J. et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. Diabetologia 49, 1686–1689 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. MacIsaac, R. J. et al. The accuracy of cystatin C and commonly used creatinine-based methods for detecting moderate and mild chronic kidney disease in diabetes. Diabet. Med. 24, 443–448 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Tsalamandris, C. et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 43, 649–655 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Kramer, H. J., Nguyen, Q. D., Curhan, G. & Hsu, C. Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289, 3273–3277 (2003).

    Article  PubMed  Google Scholar 

  86. MacIsaac, R. J. et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 27, 195–200 (2004).

    Article  PubMed  Google Scholar 

  87. MacIsaac, R. J. & Jerums, G. Albuminuric and non-albuminuric pathways to renal impairment in diabetes. Minerva Endocrinol. 30, 161–177 (2005).

    CAS  PubMed  Google Scholar 

  88. Jafar, T. H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann. Intern. Med. 139, 244–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Rossing, P., Hommel, E., Smidt, U. M. & Parving, H. H. Reduction in albuminuria predicts a beneficial effect on diminishing the progression of human diabetic nephropathy during antihypertensive treatment. Diabetologia 37, 511–516 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Jerums, G., Panagiotopoulos, S., Premaratne, E., Power, D. A. & MacIsaac, R. J. Lowering of proteinuria in response to antihypertensive therapy predicts improved renal function in late but not in early diabetic nephropathy: a pooled analysis. Am. J. Nephrol. 28, 614–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Araki, S. et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 54, 2983–2987 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Yamada, T. et al. Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care 28, 2733–2738 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Jerums.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerums, G., Panagiotopoulos, S., Premaratne, E. et al. Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat Rev Nephrol 5, 397–406 (2009). https://doi.org/10.1038/nrneph.2009.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing