Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long noncoding RNAs in kidney and cardiovascular diseases

Key Points

  • More than 98% of the human genome is transcribed into RNA transcripts that have no or low protein coding potential; long noncoding RNAs (lncRNAS) are important epigenetic regulators of gene expression

  • LncRNAs interact with components of the cellular machinery, including protein, DNA, RNA and chromatin remodelling complexes, to regulate the expression of target genes

  • LncRNAs are crucial for heart development; they also have a role in cardiac diseases, such as heart failure, myocardial infarction and processes such as cardiac contractility and autophagy

  • New research suggests that lncRNAs participate in renal processes and have pathogenic roles in kidney diseases

  • Animal studies have linked lncRNAs to diabetic nephropathy, glomerular disease, acute renal allograft rejection, renal cell carcinoma, acute kidney injury and hypertension

  • Expression of lncRNAs can be modulated, suggesting novel therapeutic avenues for the treatment of cardiac and kidney diseases

Abstract

Transcription of a large part of the human genome results in RNA transcripts that have limited or no protein-coding potential. These include long noncoding RNAs (lncRNAs), which are defined as being ≥200 nucleotides long. Unlike microRNAs, which have been extensively studied, little is known about the functional role of lncRNAs. However, studies over the past 5 years have shown that lncRNAs interfere with tissue homeostasis and have a role in pathological processes, including in the kidney and heart. The developmental expression of the microRNA sponge H19, for example, is altered in the kidneys of embryos carried by hyperglycaemic mothers, and the lncRNA Malat1 regulates hyperglycaemia-induced inflammation in endothelial cells. Putative roles for other lncRNAs have been identified in conditions such as heart failure, cardiac autophagy, hypertension, acute kidney injury, glomerular diseases, acute allograft rejection and renal cell carcinoma. This Review outlines our current understanding of the role and function of lncRNAs in kidney and cardiovascular disease as novel important regulators and potential therapeutic entry points of disease progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanistic classification of lncRNAs.
Figure 2: LncRNAs in cardiac development and disease.
Figure 3: LncRNAs in kidney disease.

Similar content being viewed by others

References

  1. Mouse Genome Sequencing Consortium et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

  2. Lorenzen, J. M., Haller, H. & Thum, T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat. Rev. Nephrol. 7, 286–294 (2011).

    Article  CAS  Google Scholar 

  3. Lorenzen, J. M., Martino, F. & Thum, T. Epigenetic modifications in cardiovascular disease. Basic Res. Cardiol. 107, 1–10 (2012).

    Article  Google Scholar 

  4. Ronco, C. et al. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  Google Scholar 

  5. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    Article  CAS  Google Scholar 

  6. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article  CAS  Google Scholar 

  7. Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    Article  CAS  Google Scholar 

  8. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    Article  CAS  Google Scholar 

  9. Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell. 24, 206–214 (2013).

    Article  CAS  Google Scholar 

  10. Aguilo, F., Zhou, M. M. & Walsh, M. J. Long noncoding RNA, polycomb, and the ghosts haunting INK4bARFINK4a expression. Cancer Res. 71, 5365–5369 (2011).

    Article  CAS  Google Scholar 

  11. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).

    Article  CAS  Google Scholar 

  12. Dahms, N. M. & Hancock, M. K. P-type lectins. Biochim. Biophys. Acta 1572, 317–340 (2002).

    Article  CAS  Google Scholar 

  13. Koepsell, H. et al. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24, 1227–1251 (2007).

    Article  CAS  Google Scholar 

  14. Thakur, N. et al. An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol. Cell. Biol. 24, 7855–7862 (2004).

    Article  CAS  Google Scholar 

  15. Rachmilewitz, J. et al. Parental imprinting of the human H19 gene. FEBS Lett. 309, 25–28 (1992).

    Article  CAS  Google Scholar 

  16. Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331 (1991).

    Article  CAS  Google Scholar 

  17. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet. 21, 400–404 (1999).

    Article  CAS  Google Scholar 

  18. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143, 390–403 (2010).

    Article  CAS  Google Scholar 

  19. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  Google Scholar 

  20. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    Article  CAS  Google Scholar 

  21. Blackwood, E. M. & Kadonaga, J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998).

    Article  CAS  Google Scholar 

  22. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  Google Scholar 

  23. Natoli, G. & Andrau, J. C. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

    Article  CAS  Google Scholar 

  24. Orom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58 (2010).

    Article  CAS  Google Scholar 

  25. Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2010).

    Article  CAS  Google Scholar 

  26. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  Google Scholar 

  27. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    Article  CAS  Google Scholar 

  28. Wang, J. et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38, 5366–5383 (2010).

    Article  CAS  Google Scholar 

  29. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  30. Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007).

    Article  CAS  Google Scholar 

  31. Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152, 570–583 (2013).

    Article  CAS  Google Scholar 

  32. Ounzain, S. et al. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J. Mol. Cell. Cardiol. 76, 55–70 (2014).

    Article  CAS  Google Scholar 

  33. Kurian, L. et al. Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131, 1278–1290 (2015).

    Article  CAS  Google Scholar 

  34. Viereck, J., Kumarswamy, R. & Thum, T. Long noncoding RNAs as inducers and terminators of vascular development. Circulation 131, 1236–1238 (2015).

    Article  Google Scholar 

  35. Gao, W. et al. Altered long noncoding RNA expression profiles in the myocardium of rats with ischemic heart failure. J. Cardiovasc. Med. (Hagerstown) 16, 473–479 (2015).

    Article  CAS  Google Scholar 

  36. Wang, K. et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377–1388 (2014).

    Article  CAS  Google Scholar 

  37. Wang, K. et al. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet. 10, e1004467 (2014).

    Article  Google Scholar 

  38. Wang, K. et al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ. 22, 1058–1068 (2015).

    Article  CAS  Google Scholar 

  39. Wang, K. et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun. 3, 781 (2012).

    Article  Google Scholar 

  40. Viereck, J. et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci. Transl. Med. 8, 326ra22 (2016).

    Article  Google Scholar 

  41. Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021 (2014).

    Article  CAS  Google Scholar 

  42. Matkovich, S. J., Edwards, J. R., Grossenheider, T. C., de Guzman Strong, C. & Dorn, G. W. 2nd Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc. Natl Acad. Sci. USA 111, 12264–12269 (2014).

    Article  CAS  Google Scholar 

  43. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007).

    Article  CAS  Google Scholar 

  44. Kumarswamy, R. et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res. 114, 1569–1575 (2014).

    Article  CAS  Google Scholar 

  45. Andrews, S. J. & Rothnagel, J. A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 15, 193–204 (2014).

    Article  CAS  Google Scholar 

  46. Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).

    Article  CAS  Google Scholar 

  47. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595–606 (2015).

    Article  CAS  Google Scholar 

  48. Hanson, R. L. et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56, 975–983 (2007).

    Article  CAS  Google Scholar 

  49. Zangrando, J. et al. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15, 460 (2014).

    Article  Google Scholar 

  50. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  51. Wang, K. et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat. Commun. 6, 6779 (2015).

    Article  CAS  Google Scholar 

  52. Michalik, K. M. et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ. Res. 114, 1389–1397 (2014).

    Article  CAS  Google Scholar 

  53. Fiedler, J. et al. Development of long noncoding RNA-based strategies to modulate tissue vascularization. J. Am. Coll. Cardiol. 66, 2005–2015 (2015).

    Article  CAS  Google Scholar 

  54. Puthanveetil, P., Chen, S., Feng, B., Gautam, A. & Chakrabarti, S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med. 19, 1418–1425 (2015).

    Article  CAS  Google Scholar 

  55. Kanwar, Y. S. et al. Imprinted mesodermal specific transcript (MEST) and H19 genes in renal development and diabetes. Kidney Int. 63, 1658–1670 (2003).

    Article  CAS  Google Scholar 

  56. Alvarez, M. L. & DiStefano, J. K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE 6, e18671 (2011).

    Article  Google Scholar 

  57. Alvarez, M. L., Khosroheidari, M., Eddy, E. & Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS ONE 8, e77468 (2013).

    Article  CAS  Google Scholar 

  58. Zhou, Q., Huang, X. R., Yu, J., Yu, X. & Lan, H. Y. Long noncoding RNA Arid2-IR is a novel therapeutic target for renal inflammation. Mol. Ther. 23, 1034–1043 (2015).

    Article  CAS  Google Scholar 

  59. Zhou, Q. et al. Identification of novel long noncoding RNAs associated with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am. J. Pathol. 184, 409–417 (2014).

    Article  CAS  Google Scholar 

  60. Huang, Y. S., Hsieh, H. Y., Shih, H. M., Sytwu, H. K. & Wu, C. C. Urinary Xist is a potential biomarker for membranous nephropathy. Biochem. Biophys. Res. Commun. 452, 415–421 (2014).

    Article  CAS  Google Scholar 

  61. Sui, W., Li, H., Ou, M., Tang, D. & Dai, Y. Altered long non-coding RNA expression profile in patients with IgA-negative mesangial proliferative glomerulonephritis. Int. J. Mol. Med. 30, 173–178 (2012).

    CAS  PubMed  Google Scholar 

  62. Chen, W. et al. Microarray analysis of long non-coding RNA expression in human acute rejection biopsy samples following renal transplantation. Mol. Med. Rep. 10, 2210–2216 (2014).

    Article  CAS  Google Scholar 

  63. Sui, W. et al. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA. Genomics 102, 310–322 (2013).

    Article  CAS  Google Scholar 

  64. Lorenzen, J. et al. Long non-coding RNAs in urine are detectable and may enable early detection of acute T cell-mediated rejection of renal allografts Clin. Chem. 61, 1505–1514 (2015).

    Article  CAS  Google Scholar 

  65. Song, S. et al. RCCRT1 is correlated with prognosis and promotes cell migration and invasion in renal cell carcinoma. Urology 84, 730.e1–730.e7 (2014).

    Article  Google Scholar 

  66. Wu, Y. et al. Suppressed expression of long non-coding RNA HOTAIR inhibits proliferation and tumourigenicity of renal carcinoma cells. Tumour Biol. 35, 11887–11894 (2014).

    Article  CAS  Google Scholar 

  67. Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  68. Chiyomaru, T. et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J. Biol. Chem. 289, 12550–12565 (2014).

    Article  CAS  Google Scholar 

  69. Yao, J. et al. Decreased expression of a novel lncRNA CADM1-AS1 is associated with poor prognosis in patients with clear cell renal cell carcinomas. Int. J. Clin. Exp. Pathol. 7, 2758–2767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, G. et al. lncRNAs expression signatures of renal clear cell carcinoma revealed by microarray. PLoS ONE 7, e42377 (2012).

    Article  CAS  Google Scholar 

  71. Baranello, L. et al. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus. Nucleic Acids Res. 38, 159–171 (2010).

    Article  CAS  Google Scholar 

  72. Bertozzi, D. et al. Characterization of novel antisense HIF-1α transcripts in human cancers. Cell Cycle 10, 3189–3197 (2011).

    Article  CAS  Google Scholar 

  73. Lorenzen, J. M. et al. Circulating long noncoding RNA TapSaki is a predictor of mortality in critically ill patients with acute kidney injury. Clin. Chem. 61, 191–201 (2015).

    Article  CAS  Google Scholar 

  74. Gopalakrishnan, K., Kumarasamy, S., Mell, B. & Joe, B. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension 65, 200–210 (2015).

    Article  CAS  Google Scholar 

  75. Yoon, J. H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by a grant from the Deutsche Forschungsgemeinschaft (DFG LO 1736/1-1 to J.M.L. and T.T.), a Memorial scholarship from the Else Kröner-Fresenius foundation (to J.M.L.) and by the Integrated Research and Treatment Center Transplantation of the Hannover Medical School, as well as by the EU-funded ERC Consolidator grant Longheart (to T.T.) and the Leducq-Fondation funded network Mirvad (to T.T.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.L. researched the data and wrote the article. T.T. contributed substantially to the discussion of the content. Both authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Johan M. Lorenzen.

Ethics declarations

Competing interests

Both authors have filed patents on the diagnostic and therapeutic use of non-coding RNAs.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

Ensembl

GenBank

UCSC Genome Browser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzen, J., Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12, 360–373 (2016). https://doi.org/10.1038/nrneph.2016.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing