Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uromodulin: from physiology to rare and complex kidney disorders

Key Points

  • Uromodulin — the most abundant urinary protein — is exclusively produced by renal epithelial cells; in the tubular lumen uromodulin forms high-molecular weight filaments that constitute the matrix of hyaline casts

  • Important functions of uromodulin include regulation of ion transport in the thick ascending limb, immunomodulation and protection against urinary tract infections and kidney stones

  • Levels of uromodulin in the urine and in the blood, where it is present in lower amounts, are valuable biomarkers for tubular mass and renal function

  • Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease; these mutations lead to retention of mutant uromodulin in the endoplasmic reticulum of tubular cells, tubulointerstitial damage and decreased levels of urinary uromodulin

  • Common variants in the UMOD promoter are associated with risk of chronic kidney disease (CKD) and hypertension; the unusually high prevalence of UMOD risk alleles suggests pathogen-driven selective pressure

  • UMOD represents a paradigm as a continuum of genetic disease risk, from rare mutations in Mendelian disease to common variants associated with complex traits including CKD and hypertension

Abstract

Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Segmental expression and biochemical characteristics of uromodulin.
Figure 2: Evolution of the UMOD gene.
Figure 3: Proposed physiological roles of uromodulin.
Figure 4: Genetic variants of uromodulin that are associated with kidney diseases.
Figure 5: Pathophysiology of autosomal dominant tubulointerstitial kidney disease (ADTKD)-UMOD.
Figure 6: Involvement of UMOD in a spectrum of diseases.

Similar content being viewed by others

References

  1. Rovida, C. L. Conclusione degli studi intorno all'origine istologica dei cilindri dell'urina. Riv. Clin. Bologna 2a, 303–306 (1873).

    Google Scholar 

  2. Tamm, I. & Horsfall, F. L. Jr. Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc. Soc. Exp. Biol. Med. 74, 106–108 (1950).

    Article  CAS  PubMed  Google Scholar 

  3. Wenk, R. E., Bhagavan, B. S. & Rudert, J. Tamm-Horsfall uromucoprotein and the pathogenesis of casts, reflux nephropathy, and nephritides. Pathobiol. Annu. 11, 229–257 (1981).

    CAS  PubMed  Google Scholar 

  4. McKenzie, J. K. & McQueen, E. G. Immunofluorescent localization of Tamm-Horsfall mucoprotein in human kidney. J. Clin. Pathol. 22, 334–339 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McQueen, E. G. The nature of urinary casts. J. Clin. Pathol. 15, 367–373 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muchmore, A. V. & Decker, J. M. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science 229, 479–481 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Pennica, D. et al. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236, 83–88 (1987). Identification of uromodulin as Tamm-Horsfall glycoprotein and of its key properties, including glycosylation and kidney-specific synthesis.

    Article  CAS  PubMed  Google Scholar 

  8. Rampoldi, L., Scolari, F., Amoroso, A., Ghiggeri, G. & Devuyst, O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int. 80, 338–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002). First identification of mutations in UMOD as the cause of the rare disorders medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dahan, K. et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J. Am. Soc. Nephrol. 14, 2883–2893 (2003). Demonstration that UMOD mutations are associated with intracellular retention of uromodulin and reduced urinary uromodulin levels.

    Article  CAS  PubMed  Google Scholar 

  11. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009). The first GWAS to demonstrate an association of UMOD variants with eGFR and CKD in the general population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016). The largest meta-analysis for eGFR and CKD reported so far, demonstrating the predominant size effect of the UMOD locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013). Demonstration of the biological effect of UMOD variants in association with salt-sensitive hypertension and kidney damage.

    Article  CAS  PubMed  Google Scholar 

  14. Olden, M. et al. Common variants in UMOD associate with urinary uromodulin levels: a meta-analysis. J. Am. Soc. Nephrol. 25, 1869–1882 (2014). First meta-GWAS demonstrating the association of UMOD variants with urinary levels of uromodulin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hession, C. et al. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237, 1479–1484 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Prasadan, K. et al. Nucleotide sequence and peptide motifs of mouse uromodulin (Tamm-Horsfall protein)—the most abundant protein in mammalian urine. Biochim. Biophys. Acta 1260, 328–332 (1995).

    Article  PubMed  Google Scholar 

  17. Rindler, M. J., Naik, S. S., Li, N., Hoops, T. C. & Peraldi, M. N. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositol-linked membrane protein. J. Biol. Chem. 265, 20784–20789 (1990).

    CAS  PubMed  Google Scholar 

  18. Bokhove, M. et al. A structured interdomain linker directs self-polymerization of human uromodulin. Proc. Natl Acad. Sci. USA 113, 1552–1557 (2016). Crystal structure of uromodulin suggesting the possible mechanism of polymerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jovine, L., Qi, H., Williams, Z., Litscher, E. & Wassarman, P. M. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat. Cell Biol. 4, 457–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Campbell, I. D. & Bork, P. Epidermal growth factor-like modules. Curr. Opin. Struc Biol. 3, 385–392 (1993).

    Article  CAS  Google Scholar 

  21. Grant, A. M. & Neuberger, A. The turnover rate of rabbit urinary Tamm-Horsfall glycoprotein. Biochem. J. 136, 659–668 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fletcher, A. P., Neuberger, A. & Ratcliffe, W. A. Tamm-Horsfall urinary glycoprotein. The chemical composition. Biochem. J. 120, 417–424 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, Z. Q., Kirk, K. A., Connelly, K. G. & Sanders, P. W. Bence Jones proteins bind to a common peptide segment of Tamm-Horsfall glycoprotein to promote heterotypic aggregation. J. Clin. Invest. 92, 2975–2983 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serafini-Cessi, F., Malagolini, N., Hoops, T. C. & Rindler, M. J. Biosynthesis and oligosaccharide processing of human Tamm-Horsfall glycoprotein permanently expressed in HeLa cells. Biochem. Biophys. Res. Commun. 194, 784–790 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Malagolini, N., Cavallone, D. & Serafini-Cessi, F. Intracellular transport, cell-surface exposure and release of recombinant Tamm-Horsfall glycoprotein. Kidney Int. 52, 1340–1350 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Rampoldi, L. et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 12, 3369–3384 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bernascone, I. et al. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic 7, 1567–1579 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. van Rooijen, J. J., Voskamp, A. F., Kamerling, J. P. & Vliegenthart, J. F. Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9, 21–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Pesce, A. J. et al. Renal tubular interactions of proteins. Clin. Biochem. 13, 209–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Donald, A. S., Yates, A. D., Soh, C. P., Morgan, W. T. & Watkins, W. M. A blood group Sda-active pentasaccharide isolated from Tamm-Horsfall urinary glycoprotein. Biochem. Biophys. Res. Commun. 115, 625–631 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Serafini-Cessi, F., Malagolini, N. & Cavallone, D. Tamm-Horsfall glycoprotein: biology and clinical relevance. Am. J. Kidney Dis. 42, 658–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Easton, R. L., Patankar, M. S., Clark, G. F., Morris, H. R. & Dell, A. Pregnancy-associated changes in the glycosylation of Tamm-Horsfall glycoprotein. Expression of sialyl Lewis(x) sequences on core 2 type O-glycans derived from uromodulin. J. Biol. Chem. 275, 21928–21938 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Welker, P. et al. Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1328–R1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, D. A., Crise, B. & Rose, J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Benting, J. H., Rietveld, A. G. & Simons, K. N-Glycans mediate the apical sorting of a GPI-anchored, raft-associated protein in Madin-Darby canine kidney cells. J. Cell Biol. 146, 313–320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schaeffer, C., Santambrogio, S., Perucca, S., Casari, G. & Rampoldi, L. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly. Mol. Biol. Cell 20, 589–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bachmann, S., Dawnay, A. B., Bouby, N. & Bankir, L. Tamm-Horsfall protein excretion during chronic alterations in urinary concentration and protein intake in the rat. Ren Physiol. Biochem. 14, 236–245 (1991).

    CAS  PubMed  Google Scholar 

  39. Goodall, A. A. & Marshall, R. D. Effects of freezing on the estimated amounts of Tamm—Horsfall glycoprotein in urine, as determined by radioimmunoassay. Biochem. J. 189, 533–539 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maxfield, M. Molecular forms of human urinary mucoprotein present under physiological conditions. Biochim. Biophys. Acta 49, 548–558 (1961).

    Article  CAS  PubMed  Google Scholar 

  41. Porter, K. R. & Tamm, I. Direct visualization of a mucoprotein component of urine. J. Biol. Chem. 212, 135–140 (1955).

    CAS  PubMed  Google Scholar 

  42. Wiggins, R. C. Uromucoid (Tamm-Horsfall glycoprotein) forms different polymeric arrangements on a filter surface under different physicochemical conditions. Clin. Chim. Acta 162, 329–340 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Santambrogio, S. et al. Urinary uromodulin carries an intact ZP domain generated by a conserved C-terminal proteolytic cleavage. Biochem. Biophys. Res. Commun. 370, 410–413 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Brunati, M. et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 4, e08887 (2015). Identification of hepsin as the protease responsible for the release of uromodulin into the tubular lumen.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grant, A. M. & Neuberger, A. The development of a radioimmunoassay for the measurement of urinary Tamm-Horsfall glycoprotein in the presence of sodium dodecyl sulphate. Clin. Sci. 44, 163–179 (1973).

    Article  CAS  PubMed  Google Scholar 

  46. Youhanna, S. et al. Determination of uromodulin in human urine: influence of storage and processing. Nephrol. Dial Transplant 29, 136–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Shihabi, Z. K., Hinsdale, M. E. & Bleyer, A. J. Analysis of Tamm-Horsfall protein by high-performance liquid chromatography with native fluorescence. J. Chromatogr. A 1027, 161–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Hammond, T. G. et al. Development and characterization of a pseudo multiple reaction monitoring method for the quantification of human uromodulin in urine. Bioanalysis 8, 1279–1296 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Scherberich, J. E. et al. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol. Dial Transplant. http://dx.doi.org/10.1093/ndt/gfw422 (2017).

  50. Ying, W. Z. & Sanders, P. W. Dietary salt regulates expression of Tamm-Horsfall glycoprotein in rats. Kidney Int. 54, 1150–1156 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Torffvit, O., Melander, O. & Hulten, U. L. Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron Physiol. 97, 31–36 (2004).

    Article  CAS  Google Scholar 

  52. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 6, e1001177 (2010). Demonstration of the association of UMOD variants with hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ecelbarger, C. A. et al. Localization and regulation of the rat renal Na+-K+-2Cl- cotransporter BSC-1. Am. J. Physiol. 271, F619–F628 (1996).

    CAS  PubMed  Google Scholar 

  54. Schmitt, R., Kahl, T., Mutig, K. & Bachmann, S. Selectively reduced expression of thick ascending limb Tamm-Horsfall protein in hypothyroid kidneys. Histochem. Cell Biol. 121, 319–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Pook, M. A., Jeremiah, S., Scheinman, S. J., Povey, S. & Thakker, R. V. Localization of the Tamm-Horsfall glycoprotein (uromodulin) gene to chromosome 16p12.3-16p13.11. Ann. Hum. Genet. 57, 285–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, X. et al. Isolation of mouse THP gene promoter and demonstration of its kidney-specific activity in transgenic mice. Am. J. Physiol. Renal Physiol. 282, F608–F617 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, J. W., Chou, C. L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheval, L. et al. Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells. Physiol. Genom. 43, 161–173 (2011).

    Article  CAS  Google Scholar 

  60. Bachmann, S., Metzger, R. & Bunnemann, B. Tamm-Horsfall protein-mRNA synthesis is localized to the thick ascending limb of Henle's loop in rat kidney. Histochemistry 94, 517–523 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. de Baaij, J. H. et al. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am. J. Physiol. Renal Physiol. 305, F1563–F1573 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Sikri, K. L., Foster, C. L., MacHugh, N. & Marshall, R. D. Localization of Tamm-Horsfall glycoprotein in the human kidney using immuno-fluorescence and immuno-electron microscopical techniques. J. Anat. 132, 597–605 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. El-Achkar, T. M. et al. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 304, F1066–F1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar, S. & Muchmore, A. Tamm-Horsfall protein—uromodulin (1950–1990). Kidney Int. 37, 1395–1401 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Brunskill, E. W. et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev. Cell 15, 781–791 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sikri, K. L., Foster, C. L., Alexander, D. P. & Marshall, R. D. Localization of Tamm-Horsfall glycoprotein in the fetal and neonatal hamster kidney as demonstrated by immunofluorescence and immunoelectron microscopical techniques. Biol. Neonate 39, 305–312 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Zimmerhackl, L. B. et al. Tamm-Horsfall protein as a marker of tubular maturation. Pediatr. Nephrol. 10, 448–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. DeFreitas, M. J. et al. Longitudinal patterns of urine biomarkers in infants across gestational ages. Pediatr. Nephrol. 31, 1179–1188 (2016).

    Article  PubMed  Google Scholar 

  69. Kim, H. T., Song, I. Y. & Piedrahita, J. Kidney-specific activity of the bovine uromodulin promoter. Transgen. Res. 12, 191–201 (2003).

    Article  CAS  Google Scholar 

  70. Zbikowska, H. M. et al. The use of the uromodulin promoter to target production of recombinant proteins into urine of transgenic animals. Transgen. Res. 11, 425–435 (2002).

    Article  CAS  Google Scholar 

  71. Stricklett, P. K., Taylor, D., Nelson, R. D. & Kohan, D. E. Thick ascending limb-specific expression of Cre recombinase. Am. J. Physiol. Renal Physiol. 285, F33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava, R., Micanovic, R., El-Achkar, T. M. & Janga, S. C. An intricate network of conserved DNA upstream motifs and associated transcription factors regulate the expression of uromodulin gene. J. Urol. 192, 981–989 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO J. 23, 1657–1668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 43, D670–D681 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Badgett, A. & Kumar, S. Phylogeny of Tamm-Horsfall protein. Urol. Int. 61, 72–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Wallace, A. C. & Nairn, R. C. Tamm-Horsfall protein in kidneys of human embryos and foreign species. Pathology 3, 303–310 (1971).

    Article  Google Scholar 

  77. Howie, A. J., Lote, C. J., Cunningham, A. A., Zaccone, G. & Fasulo, S. Distribution of immunoreactive Tamm-Horsfall protein in various species in the vertebrate classes. Cell Tissue Res. 274, 15–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  78. Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. & Scheele, G. A. GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc. Natl Acad. Sci. USA 89, 1189–1193 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ronco, P. et al. Physiopathologic aspects of Tamm-Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle's loop. Adv. Nephrol. Necker Hosp. 16, 231–249 (1987).

    CAS  PubMed  Google Scholar 

  80. Kondo, Y. et al. Phylogenetic, ontogenetic, and pathological aspects of the urine-concentrating mechanism. Clin. Exp. Nephrol. 10, 165–174 (2006).

    Article  PubMed  Google Scholar 

  81. Mutig, K. et al. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. J. Biol. Chem. 286, 30200–30210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Renigunta, A. et al. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. J. Biol. Chem. 286, 2224–2235 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Bachmann, S. et al. Renal effects of Tamm-Horsfall protein (uromodulin) deficiency in mice. Am. J. Physiol. Renal Physiol. 288, F559–F567 (2005). Study of the effects of lack of uromodulin on murine kidney physiology.

    Article  CAS  PubMed  Google Scholar 

  84. Graham, L. A. et al. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63, 551–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Coe, F. L., Evan, A. & Worcester, E. Pathophysiology-based treatment of idiopathic calcium kidney stones. Clin. J. Am. Soc. Nephrol. 6, 2083–2092 (2011).

    Article  PubMed  Google Scholar 

  86. Serafini-Cessi, F., Monti, A. & Cavallone, D. N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J. 22, 383–394 (2005). Demonstration that binding of uromodulin to uropathogenic E. coli is largely mediated by protein glycans.

    Article  CAS  PubMed  Google Scholar 

  87. Gokhale, J. A., Glenton, P. A. & Khan, S. R. Characterization of Tamm-Horsfall protein in a rat nephrolithiasis model. J. Urol. 166, 1492–1497 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Hallson, P. C., Choong, S. K., Kasidas, G. P. & Samuell, C. T. Effects of Tamm-Horsfall protein with normal and reduced sialic acid content upon the crystallization of calcium phosphate and calcium oxalate in human urine. Br. J. Urol. 80, 533–538 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y. et al. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am. J. Physiol. Renal Physiol. 299, F469–478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mo, L. et al. Tamm-Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int. 66, 1159–1166 (2004). Increased incidence of kidney stones in mice lacking uromodulin.

    Article  CAS  PubMed  Google Scholar 

  91. Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519–533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolf, M. T., Wu, X. R. & Huang, C. L. Uromodulin upregulates TRPV5 by impairing caveolin-mediated endocytosis. Kidney Int. 84, 130–137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mo, L. et al. Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am. J. Physiol. Renal Physiol. 286, F795–F802 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Bates, J. M. et al. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797 (2004). Increased susceptibility to urinary tract infections by type 1-fimbriated E. coli in mice lacking uromodulin.

    Article  CAS  PubMed  Google Scholar 

  96. Pak, J., Pu, Y., Zhang, Z. T., Hasty, D. L. & Wu, X. R. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276, 9924–9930 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Garimella, P. S. et al. Urinary uromodulin and risk of urinary tract infections: the Cardiovascular Health Study. Am. J. Kidney Dis. 69, 744–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghirotto, S. et al. The uromodulin gene locus shows evidence of pathogen adaptation through human evolution. J. Am. Soc. Nephrol. 27, 2983–2996 (2016). Identification of pathogen-driven selection at the UMOD locus, which could explain the high prevalence of the deleterious allele in most populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rhodes, D. C., Hinsman, E. J. & Rhodes, J. A. Tamm-Horsfall glycoprotein binds IgG with high affinity. Kidney Int. 44, 1014–1021 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Muchmore, A. V., Shifrin, S. & Decker, J. M. In vitro evidence that carbohydrate moieties derived from uromodulin, an 85,000 dalton immunosuppressive glycoprotein isolated from human pregnancy urine, are immunosuppressive in the absence of intact protein. J. Immunol. 138, 2547–2553 (1987).

    CAS  PubMed  Google Scholar 

  101. Springer, G. F., Schwick, H. G. & Fletcher, M. A. The relationship of the influenza virus inhibitory activity of glycoproteins to their molecular size and sialic acid content. Proc. Natl Acad. Sci. USA 64, 634–641 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. El-Achkar, T. M. et al. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am. J. Physiol. Renal Physiol. 300, F999–1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. El-Achkar, T. M. et al. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am. J. Physiol. Renal Physiol. 295, F534–F544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Micanovic, R. et al. Tamm-Horsfall protein regulates granulopoiesis and systemic neutrophil homeostasis. J. Am. Soc. Nephrol. 26, 2172–2182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saemann, M. D. et al. Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J. Clin. Invest. 115, 468–475 (2005). Link between uromodulin and innate and adaptive immunity in the urinary tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Darisipudi, M. N. et al. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome. J. Am. Soc. Nephrol. 23, 1783–1789 (2012). Uromodulin can behave as a danger signal and promote inflammation in the interstititum via activation of the inflammasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thomas, D. B., Davies, M., Peters, J. R. & Williams, J. D. Tamm Horsfall protein binds to a single class of carbohydrate specific receptors on human neutrophils. Kidney Int. 44, 423–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Wimmer, T., Cohen, G., Saemann, M. D. & Horl, W. H. Effects of Tamm-Horsfall protein on polymorphonuclear leukocyte function. Nephrol. Dial Transplant 19, 2192–2197 (2004).

    Article  PubMed  Google Scholar 

  109. Schmid, M. et al. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol. Biochem. 26, 311–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Sanders, P. W., Booker, B. B., Bishop, J. B. & Cheung, H. C. Mechanisms of intranephronal proteinaceous cast formation by low molecular weight proteins. J. Clin. Invest. 85, 570–576 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hutchison, C. A. et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat. Rev. Nephrol. 8, 43–51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Start, D. A., Silva, F. G., Davis, L. D., D'Agati, V. & Pirani, C. L. Myeloma cast nephropathy: immunohistochemical and lectin studies. Mod. Pathol. 1, 336–347 (1988).

    CAS  PubMed  Google Scholar 

  113. Ying, W. Z., Allen, C. E., Curtis, L. M., Aaron, K. J. & Sanders, P. W. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J. Clin. Invest. 122, 1777–1785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanders, P. W. & Booker, B. B. Pathobiology of cast nephropathy from human Bence Jones proteins. J. Clin. Invest. 89, 630–639 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang, Z. Q. & Sanders, P. W. Localization of a single binding site for immunoglobulin light chains on human Tamm-Horsfall glycoprotein. J. Clin. Invest. 99, 732–736 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ying, W. Z. & Sanders, P. W. Mapping the binding domain of immunoglobulin light chains for Tamm-Horsfall protein. Am. J. Pathol. 158, 1859–1866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Askenazi, D. J. et al. Acute kidney injury urine biomarkers in very low-birth-weight infants. Clin. J. Am. Soc. Nephrol. 11, 1527–1535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schroter, J., Timmermans, G., Seyberth, H. W., Greven, J. & Bachmann, S. Marked reduction of Tamm-Horsfall protein synthesis in hyperprostaglandin E-syndrome. Kidney Int. 44, 401–410 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Lynn, K. L. & Marshall, R. D. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin. Nephrol. 22, 253–257 (1984).

    CAS  PubMed  Google Scholar 

  120. Thornley, C., Dawnay, A. & Cattell, W. R. Human Tamm-Horsfall glycoprotein: urinary and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin. Sci. (Lond.) 68, 529–535 (1985). Demonstration of a correlation between plasma and urine levels of uromodulin; differences in concentrations; and influence by CKD.

    Article  CAS  Google Scholar 

  121. Matafora, V. et al. Early markers of Fabry disease revealed by proteomics. Mol. Biosyst 11, 1543–1551 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Tsai, C. Y., Wu, T. H., Yu, C. L., Lu, J. Y. & Tsai, Y. Y. Increased excretions of β2-microglobulin, IL-6, and IL-8 and decreased excretion of Tamm-Horsfall glycoprotein in urine of patients with active lupus nephritis. Nephron 85, 207–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Kistler, A. D. et al. Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int. 76, 89–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Rasch, R., Torffvit, O., Bachmann, S., Jensen, P. K. & Jacobsen, N. O. Tamm-Horsfall glycoprotein in streptozotocin diabetic rats: a study of kidney in situ hybridization, immunohistochemistry, and urinary excretion. Diabetologia 38, 525–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Bernard, A. M., Ouled, A. A., Lauwerys, R. R., Lambert, A. & Vandeleene, B. Pronounced decrease of Tamm-Horsfall proteinuria in diabetics. Clin. Chem. 33, 1264 (1987).

    CAS  PubMed  Google Scholar 

  126. Torffvit, O. & Agardh, C. D. Tubular secretion of Tamm-Horsfall protein is decreased in type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Nephron 65, 227–231 (1993).

    Article  CAS  PubMed  Google Scholar 

  127. Pruijm, M. et al. Associations of urinary uromodulin with clinical characteristics and markers of tubular function in the general population. Clin. J. Am. Soc. Nephrol. 11, 70–80 (2016). Population-based study demonstrating that urinary uromodulin levels correlate with functioning nephron mass and tubular function parameters.

    Article  CAS  PubMed  Google Scholar 

  128. Troyanov, S. et al. Clinical, genetic, and urinary factors associated with uromodulin excretion. Clin. J. Am. Soc. Nephrol. 11, 62–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Ledo, N. et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J. Am. Soc. Nephrol. 26, 692–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Garimella, P. S. et al. Urinary uromodulin, kidney function, and cardiovascular disease in elderly adults. Kidney Int. 88, 1126–1134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yoshida, T. et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 61, 1646–1654 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Garimella, P. S. et al. Association of preoperative urinary uromodulin with AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 12, 10–18 (2017).

    Article  PubMed  Google Scholar 

  133. Ganter, K., Bongartz, D. & Hesse, A. Tamm-Horsfall protein excretion and its relation to citrate in urine of stone-forming patients. Urology 53, 492–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Pourmand, G. et al. Comparison of urinary proteins in calcium stone formers and healthy individuals: a case-control study. Urol. Int. 76, 163–168 (2006).

    Article  PubMed  Google Scholar 

  135. Knorle, R. et al. Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin. Chem. 40, 1739–1743 (1994).

    CAS  PubMed  Google Scholar 

  136. Trewick, A. L. & Rumsby, G. Isoelectric focusing of native urinary uromodulin (Tamm-Horsfall protein) shows no physicochemical differences between stone formers and non-stone formers. Urol. Res. 27, 250–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Dawnay, A. B. & Cattell, W. R. Serum Tamm-Horsfall glycoprotein levels in health and in renal disease. Clin. Nephrol. 15, 5–8 (1981).

    CAS  PubMed  Google Scholar 

  138. Steubl, D. et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Med. (Baltimore) 95, e3011 (2016). Demonstration of the correlation of serum uromodulin levels with renal function.

    Article  CAS  Google Scholar 

  139. Fedak, D. et al. Serum uromodulin concentrations correlate with glomerular filtration rate in patients with chronic kidney disease. Pol. Arch. Med. Wewn 126, 995–1004 (2016).

    PubMed  Google Scholar 

  140. Risch, L. et al. The serum uromodulin level is associated with kidney function. Clin. Chem. Lab Med. 52, 1755–1761 (2014).

    CAS  PubMed  Google Scholar 

  141. Steubl, D. et al. Serum uromodulin predicts graft failure in renal transplant recipients. Biomarkers 22, 171–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Prajczer, S. et al. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol. Dial Transplant 25, 1896–1903 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Alfaham, M., Peters, T. J., Meyrick, S., Avis, P. & Verrier Jones, K. Serum Tamm-Horsfall protein levels in childhood: relationship with age and glomerular filtration rate. Nephron 52, 216–221 (1989).

    Article  CAS  PubMed  Google Scholar 

  144. Yamamoto, T., Miyata, H., Fujiyama, T., Kinoshita, T. & Maki, S. Serum Tamm-Horsfall glycoprotein level in children with various renal diseases. Nephron 59, 440–444 (1991).

    Article  CAS  PubMed  Google Scholar 

  145. Johnstone, L. M., Jones, C. L., Walker, R. G. & Powell, H. R. Tamm-Horsfall protein: are serum levels a marker for urinary tract obstruction? Pediatr. Nephrol. 8, 689–693 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Delgado, G. E. et al. Serum uromodulin and mortality risk in patients undergoing coronary angiography. J. Am. Soc. Nephrol. 28, 2201–2210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hanson, L. A., Fasth, A. & Jodal, U. Autoantibodies to Tamm-Horsfall protein, a tool for diagnosing the level of urinary-tract infection. Lancet 1, 226–228 (1976).

    Article  CAS  PubMed  Google Scholar 

  148. Marier, R. et al. Antibody to Tamm-Horsfall protein in patients with urinary tract obstruction and vesicoureteral reflux. J. Infect. Dis. 138, 781–790 (1978).

    Article  CAS  PubMed  Google Scholar 

  149. Ooi, B. S. et al. Antibody to Tamm-Horsfall protein after acute tubular necrosis. Am. J. Nephrol. 1, 48–51 (1981).

    Article  CAS  PubMed  Google Scholar 

  150. Fowler, J. E. et al. Serum antibody against Tamm-Horsfall protein in patients with renal cell carcinoma. Cancer 59, 1923–1926 (1987).

    Article  PubMed  Google Scholar 

  151. Hoyer, J. R. Tubulointerstitial immune complex nephritis in rats immunized with Tamm-Horsfall protein. Kidney Int. 17, 284–292 (1980).

    Article  CAS  PubMed  Google Scholar 

  152. Mayrer, A. R. et al. Tubulointerstitial nephritis and immunologic responses to Tamm-Horsfall protein in rabbits challenged with homologous urine or Tamm-Horsfall protein. J. Immunol. 128, 2634–2642 (1982).

    CAS  PubMed  Google Scholar 

  153. Fasth, A., Hoyer, J. R. & Seiler, M. W. Renal tubular immune complex formation in mice immunized with Tamm-Horsfall protein. Am. J. Pathol. 125, 555–562 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Fasth, A., Bjure, J., Hellstrom, M., Jacobsson, B. & Jodal, U. Autoantibodies to Tamm-Horsfall glycoprotein in children with renal damage associated with urinary tract infections. Acta Paediatr. Scand. 69, 709–715 (1980).

    Article  CAS  PubMed  Google Scholar 

  155. Lynn, K. L. & Marshall, R. D. The presence in serum of proteins which are immunologically cross-reactive with Tamm-Horsfall glycoprotein. Biochem. J. 194, 561–568 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hunt, J. S., Groufsky, A. & Lynn, K. L. Studies to assess the biological relevance of anti-Tamm-Horsfall protein antibodies detected by direct-binding enzyme-linked immunosorbent assay. Clin. Sci. (Lond.) 73, 479–487 (1987).

    Article  CAS  Google Scholar 

  157. Pinto, M., Oron, C., Pinto, O. & Peer, G. Natural autoantibodies against Tamm-Horsfall glycoprotein in normal individuals in relation to age and in adult patients with kidney diseases. Jpn. J. Exp. Med. 60, 197–202 (1990).

    CAS  PubMed  Google Scholar 

  158. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bingham, C. et al. Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1β gene mutation. Kidney Int. 63, 1645–1651 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Zivna, M. et al. Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am. J. Hum. Genet. 85, 204–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bolar, N. A. et al. Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am. J. Hum. Genet. 99, 174–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Piret, S. E. et al. Genome-wide study of familial juvenile hyperuricaemic (gouty) nephropathy (FJHN) indicates a new locus, FJHN3, linked to chromosome 2p22.1-p21. Hum. Genet. 129, 51–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Eckardt, K. U. et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management—A KDIGO consensus report. Kidney Int. 88, 676–683 (2015). Consensus report on the diagnosis and classification of autosomal dominant tubulointerstitial kidney disease.

    Article  CAS  PubMed  Google Scholar 

  164. Lhotta, K. et al. Epidemiology of uromodulin-associated kidney disease - results from a nation-wide survey. Nephron Extra 2, 147–158 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Quaglia, M. et al. Unexpectedly high prevalence of rare genetic disorders in kidney transplant recipients with an unknown causal nephropathy. Clin. Transplant 28, 995–1003 (2014).

    Article  PubMed  Google Scholar 

  166. Bollee, G. et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6, 2429–2438 (2011). Large clinical series detailing the phenotype of patients harbouring dominant mutations in UMOD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Moskowitz, J. L. et al. Association between genotype and phenotype in uromodulin-associated kidney disease. Clin. J. Am. Soc. Nephrol. 8, 1349–1357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ekici, A. B. et al. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin. Kidney Int. 86, 589–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Lens, X. M., Banet, J. F., Outeda, P. & Barrio-Lucia, V. A novel pattern of mutation in uromodulin disorders: autosomal dominant medullary cystic kidney disease type 2, familial juvenile hyperuricemic nephropathy, and autosomal dominant glomerulocystic kidney disease. Am. J. Kidney Dis. 46, 52–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Dahan, K. et al. Familial juvenile hyperuricemic nephropathy and autosomal dominant medullary cystic kidney disease type 2: two facets of the same disease? J. Am. Soc. Nephrol. 12, 2348–2357 (2001).

    CAS  PubMed  Google Scholar 

  171. Vylet'al, P. et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 70, 1155–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Nasr, S. H., Lucia, J. P., Galgano, S. J., Markowitz, G. S. & D'Agati, V. D. Uromodulin storage disease. Kidney Int. 73, 971–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Bleyer, A. J., Hart, T. C., Shihabi, Z., Robins, V. & Hoyer, J. R. Mutations in the uromodulin gene decrease urinary excretion of Tamm-Horsfall protein. Kidney Int. 66, 974–977 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Edwards, N. et al. Novel homozygous UMOD mutation reveals gene-dosage effects on uromodulin processing and urinary excretion. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfx066 (2017).

  175. Williams, S. E. et al. Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Hum. Mol. Genet. 18, 2963–2974 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bernascone, I. et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19, 2998–3010 (2010). The first transgenic mouse model of uromodulin-associated kidney disease.

    Article  CAS  PubMed  Google Scholar 

  177. Kemter, E. et al. Novel missense mutation of uromodulin in mice causes renal dysfunction with alterations in urea handling, energy, and bone metabolism. Am. J. Physiol. Renal Physiol. 297, F1391–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Kemter, E. et al. Standardized, systemic phenotypic analysis of Umod(C93F) and Umod(A227T) mutant mice. PLoS ONE 8, e78337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kemter, E., Frohlich, T., Arnold, G. J., Wolf, E. & Wanke, R. Mitochondrial dysregulation secondary to endoplasmic reticulum stress in autosomal dominant tubulointerstitial kidney disease - UMOD (ADTKD-UMOD). Sci. Rep. 7, 42970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Piret, S. E. et al. Mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress. Dis. Model. Mech. 10, 773–786 (2017). First knock-in mouse model of uromodulin-associated kidney disease, with ER stress as a key pathogenic mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Raffi, H., Bates, J. M., Laszik, Z. & Kumar, S. Tamm-Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int. 69, 1914–1915 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Rezende-Lima, W. et al. Homozygosity for uromodulin disorders: FJHN and MCKD-type 2. Kidney Int. 66, 558–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Choi, S. W. et al. Mutant tamm-horsfall glycoprotein accumulation in endoplasmic reticulum induces apoptosis reversed by colchicine and sodium 4-phenylbutyrate. J. Am. Soc. Nephrol. 16, 3006–3014 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Utami, S. B. et al. Apoptosis induced by an uromodulin mutant C112Y and its suppression by topiroxostat. Clin. Exp. Nephrol. 19, 576–584 (2015).

    Article  PubMed  Google Scholar 

  185. Kemter, E. et al. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease. J. Biol. Chem. 289, 10715–10726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Glaudemans, B. et al. A primary culture system of mouse thick ascending limb cells with preserved function and uromodulin processing. Pflugers Arch. 466, 343–356 (2014). First primary culture system of TAL cells, which enabled studies of endogenous uromodulin properties.

    Article  CAS  PubMed  Google Scholar 

  187. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chambers, J. C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Sveinbjornsson, G. et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. 23, 6935–6943 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, C. T. et al. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet. 7, e1002264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 44, 904–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Boger, C. A. et al. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet. 7, e1002292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gorski, M. et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 87, 1017–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Ahluwalia, T. S., Lindholm, E., Groop, L. & Melander, O. Uromodulin gene variant is associated with type 2 diabetic nephropathy. J. Hypertens. 29, 1731–1734 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Deshmukh, H. A., Palmer, C. N., Morris, A. D. & Colhoun, H. M. Investigation of known estimated glomerular filtration rate loci in patients with type 2 diabetes. Diabet. Med. 30, 1230–1235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Guan, M. et al. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum. Genet. 135, 1251–1262 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Shlipak, M. G. & Day, E. C. Biomarkers for incident CKD: a new framework for interpreting the literature. Nat. Rev. Nephrol. 9, 478–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Han, J. et al. Common genetic variants of the human uromodulin gene regulate transcription and predict plasma uric acid levels. Kidney Int. 83, 733–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wuttke, M. & Kottgen, A. Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 12, 549–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  201. Eckardt, K. U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).

    Article  PubMed  Google Scholar 

  202. Kottgen, A. et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 21, 337–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Devuyst, O. Salt wasting and blood pressure. Nat. Genet. 40, 495–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Di Rienzo, A. & Hudson, R. R. An evolutionary framework for common diseases: the ancestral-susceptibility model. Trends Genet. 21, 596–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Rossier, B. C., Bochud, M. & Devuyst, O. The hypertension pandemic: an evolutionary perspective. Physiol. (Bethesda) 32, 112–125 (2017). Global and evolutionary perspectives about the role of uromodulin in salt handling.

    CAS  Google Scholar 

  206. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Raffi, H. S., Bates, J. M. Jr., Laszik, Z. & Kumar, S. Tamm-horsfall protein protects against urinary tract infection by proteus mirabilis. J. Urol. 181, 2332–2338 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Mo, L. et al. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am. J. Physiol. Renal Physiol. 293, F1935–F1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Liu, Y., El-Achkar, T. M. & Wu, X. R. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J. Biol. Chem. 287, 16365–16378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kemter, E. et al. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum. Mol. Genet. 22, 4148–4163 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Mahajan, A. et al. Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am. J. Hum. Genet. 99, 636–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

O.D. is supported by grants from the European Community's Seventh Framework Programme (305608 EURenOmics), the Swiss National Centre of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH) programme, the Swiss National Science Foundation (31003A_169850) and the Rare Disease Initiative Zürich (Radiz), a clinical research priority programme of the University of Zürich, Switzerland. E.O. is supported by the Fonds National de la Recherche Luxembourg (6903109), and the University Research Priority Programme “Integrative Human Physiology, ZIHP” of the University of Zürich. L.R. is supported by grants from Telethon-Italy (TCR08006, GGP14263), the Italian Ministry of Health (RF-2010-2319394) and Fondazione Cariplo (2014–0827). We are grateful to Gregor Weiss (ETH, Zurich) for providing EM pictures of uromodulin, to Céline Schaeffer (San Raffaele, Milan) for reviewing the UMOD mutations and to Sonia Youhanna (UZH, Zurich) for helpful assistance in deglycosylation experiments.

Author information

Authors and Affiliations

Authors

Contributions

O.D., E.O. and L.R. researched the data, discussed the article content and wrote, edited and approved the manuscript before submission.

Corresponding author

Correspondence to Olivier Devuyst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devuyst, O., Olinger, E. & Rampoldi, L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 13, 525–544 (2017). https://doi.org/10.1038/nrneph.2017.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing