Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment

Key Points

  • CSA-AKI is the second most common cause of AKI in the intensive care setting and is associated with increased mortality

  • The pathophysiology of CSA-AKI is very complex and probably includes renal ischaemia–reperfusion injury, inflammation, oxidative stress, haemolysis and nephrotoxins

  • To date, no consensus definition for CSA-AKI exists, but the KDIGO criteria for AKI are commonly used in clinical practice

  • To date, no pharmacological or non-pharmacological preventive strategies have been shown to reduce the occurrence of CSA-AKI in clinical trials

  • The management of CSA-AKI requires a multifaceted approach

  • Renal replacement therapy is necessary in 1–5% of patients with CSA-AKI and is associated with poor patient and renal prognosis, both in the short and long-term

Abstract

Cardiac surgery-associated acute kidney injury (CSA-AKI) is the most common clinically important complication in adult patients undergoing open heart surgery, and is associated with increased mortality and morbidity. In patients in intensive care units, CSA-AKI is the second most common type of AKI after septic AKI. In this Review, we explore the definition of CSA-AKI, discuss its epidemiology and identify its risk factors. We discuss current theories of the pathophysiology of CSA-AKI and describe its clinical course. Furthermore, we introduce diagnostic tools with particular reference to novel biomarkers of AKI and their potential utility; we analyse currently applied interventions aimed at attenuating AKI in patients undergoing cardiac surgery; and describe evidence from randomized controlled trials aimed at preventing or treating CSA-AKI. Finally, we explore issues in the use of renal replacement therapy, its timing, its intensity and its preferred modalities in patients with CSA-AKI, and we discuss the prognosis of CSA-AKI in terms of patient survival and kidney recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential pathophysiological pathways in CSA-AKI.
Figure 2: The effects of AKI on overall patient outcomes.
Figure 3: Preventive strategies for CSA-AKI.

Similar content being viewed by others

References

  1. Bove, T., Monaco, F., Covello, R. D. & Zangrillo, A. Acute renal failure and cardiac surgery. HSR Proc. Intensive Care Cardiovasc. Anesth. 1, 13–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Weisse, A. B. Cardiac surgery: a century of progress. Tex. Heart Inst. J. 38, 486–490 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Hobson, C. E. et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 119, 2444–2453 (2009).

    Article  PubMed  Google Scholar 

  4. Mao, H. et al. Cardiac surgery-associated acute kidney injury. Cardiorenal Med. 3, 178–199 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ortega-Loubon, C., Fernandez-Molina, M., Carrascal-Hinojal, Y. & Fulquet-Carreras, E. Cardiac surgery-associated acute kidney injury. Ann. Card Anaesth. 19, 687–698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  7. Fuhrman, D. Y. & Kellum, J. A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr. Opin. Anaesthesiol. 30, 60–65 (2017).

    CAS  PubMed  Google Scholar 

  8. Lopes, J. A. & Jorge, S. The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin. Kidney J. 6, 8–14 (2013).

    Article  PubMed  Google Scholar 

  9. Englberger, L. et al. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit. Care 15, R16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kellum, J. A. et al. KDIGO Clinical Practice Guideline for acute kidney injury 2012. Kidney Int. Suppl. 2, 1–138 (2012).

    Article  Google Scholar 

  11. Luo, X. et al. A comparison of different diagnostic criteria of acute kidney injury in critically ill patients. Crit. Care 18, R144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prowle, J. R. et al. Combination of biomarkers for diagnosis of acute kidney injury after cardiopulmonary bypass. Ren Fail 37, 408–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coca, S. G. et al. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J. Am. Soc. Nephrol. 25, 1063–1071 (2014).

    Article  PubMed  Google Scholar 

  14. Leacche, M. et al. Outcomes in patients with normal serum creatinine and with artificial renal support for acute renal failure developing after coronary artery bypass grafting. Am. J. Cardiol. 93, 353–356 (2004).

    Article  PubMed  Google Scholar 

  15. Burns, K. E. et al. Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing CABG surgery: a randomized controlled trial. JAMA 294, 342–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Xie, X. et al. Reassessment of acute kidney injury after cardiac surgery: a retrospective study. Intern. Med. 56, 275–282 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hobson, C. et al. Cost and mortality associated with postoperative acute kidney injury. Ann. Surg. 261, 1207–1214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ozrazgat-Baslanti, T. et al. Acute and chronic kidney disease and cardiovascular mortality after major surgery. Ann. Surg. 264, 987–996 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kidher, E. et al. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J. Cardiothorac Surg. 9, 89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lameire, N., Van Biesen, W. & Vanholder, R. Acute kidney injury. Lancet 372, 1863–1865 (2008).

    Article  PubMed  Google Scholar 

  21. Hudson, C. et al. Emerging concepts in acute kidney injury following cardiac surgery. Semin. Cardiothorac Vasc. Anesth. 12, 320–330 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sutton, T. A., Fisher, C. J. & Molitoris, B. A. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 62, 1539–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bishopric, N. H., Andreka, P., Slepak, T. & Webster, K. A. Molecular mechanisms of apoptosis in the cardiac myocyte. Curr. Opin. Pharmacol. 1, 141–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Stoner, J. D., Clanton, T. L., Aune, S. E. & Angelos, M. G. O2 delivery and redox state are determinants of compartment-specific reactive O2 species in myocardial reperfusion. Am. J. Physiol. Heart Circ. Physiol. 292, H109–H116 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Wei, C., Li, L., Kim, I. K., Sun, P. & Gupta, S. NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress. Free Radic. Res. 48, 282–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Edelstein, C. L. & Schrier, R. W. in Diseases of the Kidney and Urinary Tract 8th edn (ed. Schrier, R. W.) 930–961 (Lippincott Williams & Wilkins, 2007).

  28. Vercaemst, L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J. Extra Corpor. Technol. 40, 257–267 (2008).

    PubMed  PubMed Central  Google Scholar 

  29. Vermeulen Windsant, I. C. et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front. Physiol. 5, 340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Billings, F. T. 4th, Yu, C., Byrne, J. G., Petracek, M. R. & Pretorius, M. Heme oxygenase-1 and acute kidney injury following cardiac surgery. Cardiorenal Med. 4, 12–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruins, P. et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 96, 3542–3548 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, W. R. et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J. Am. Soc. Nephrol. 26, 3123–3132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baliga, R., Ueda, N., Walker, P. D. & Shah, S. V. Oxidant mechanisms in toxic acute renal failure. Am. J. Kidney Dis. 29, 465–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Dhalla, N. S., Elmoselhi, A. B., Hata, T. & Makino, N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc. Res. 47, 446–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Haase, M., Bellomo, R. & Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 55, 2024–2033 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Sponsel, H. T. et al. Effect of iron on renal tubular epithelial cells. Kidney Int. 50, 436–444 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. O'Neal, J. B., Shaw, A. D. & Billings, F. T. 4th. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit. Care 20, 187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schrier, R. W. & Abraham, W. T. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 341, 577–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Kitts, D., Bongard, F. S. & Klein, S. R. Septic embolism complicating infective endocarditis. J. Vasc. Surg. 14, 480–485; discussion 485–487 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Modi, K. S. & Rao, V. K. Atheroembolic renal disease. J. Am. Soc. Nephrol. 12, 1781–1787 (2001).

    CAS  PubMed  Google Scholar 

  41. Chew, S. T. et al. Preliminary report on the association of apolipoprotein E polymorphisms, with postoperative peak serum creatinine concentrations in cardiac surgical patients. Anesthesiology 93, 325–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Isbir, S. C. et al. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. Heart Surg. Forum 10, E439–E444 (2007).

    Article  PubMed  Google Scholar 

  43. Gaudino, M. et al. Genetic control of postoperative systemic inflammatory reaction and pulmonary and renal complications after coronary artery surgery. J. Thorac Cardiovasc. Surg. 126, 1107–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Coleman, M. D., Shaefi, S. & Sladen, R. N. Preventing acute kidney injury after cardiac surgery. Curr. Opin. Anaesthesiol. 24, 70–76 (2011).

    Article  PubMed  Google Scholar 

  45. Coppolino, G., Presta, P., Saturno, L. & Fuiano, G. Acute kidney injury in patients undergoing cardiac surgery. J. Nephrol. 26, 32–40 (2013).

    Article  PubMed  Google Scholar 

  46. Lema, G. et al. Effects of extracorporeal circulation on renal function in coronary surgical patients. Anesth. Analg. 81, 446–451 (1995).

    CAS  PubMed  Google Scholar 

  47. Shaw, A. Update on acute kidney injury after cardiac surgery. J. Thorac Cardiovasc. Surg. 143, 676–681 (2012).

    Article  PubMed  Google Scholar 

  48. Haase, M. et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 27, 153–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Cheungpasitporn, W. et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials. Nephrology (Carlton) 20, 727–735 (2015).

    Article  Google Scholar 

  50. Lamy, A. et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N. Engl. J. Med. 366, 1489–1497 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Lamy, A. et al. Effects of off-pump and on-pump coronary-artery bypass grafting at 1 year. N. Engl. J. Med. 368, 1179–1188 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Shroyer, A. L. et al. On-pump versus off-pump coronary-artery bypass surgery. N. Engl. J. Med. 361, 1827–1837 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Deininger, S. et al. Renal function and urinary biomarkers in cardiac bypass surgery: a prospective randomized trial comparing three surgical techniques. Thorac Cardiovasc. Surg. 64, 561–568 (2016).

    PubMed  Google Scholar 

  54. Rosner, M. H. & Okusa, M. D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 1, 19–32 (2006).

    Article  PubMed  Google Scholar 

  55. Karkouti, K. et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac Cardiovasc. Surg. 129, 391–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Habib, R. H. et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit. Care Med. 33, 1749–1756 (2005).

    Article  PubMed  Google Scholar 

  57. Khan, U. A. et al. Blood transfusions are associated with urinary biomarkers of kidney injury in cardiac surgery. J. Thorac Cardiovasc. Surg. 148, 726–732 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zarbock, A. & Milles, K. Novel therapy for renal protection. Curr. Opin. Anaesthesiol. 28, 431–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Thakar, C. V., Arrigain, S., Worley, S., Yared, J. P. & Paganini, E. P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 16, 162–168 (2005).

    Article  PubMed  Google Scholar 

  60. Mehta, R. H. et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 114, 2208–2216; quiz 2208 (2006).

    Article  PubMed  Google Scholar 

  61. Wijeysundera, D. N. et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA 297, 1801–1809 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Birnie, K. et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit. Care 18, 606 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J. Am. Soc. Nephrol. 22, 1737–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haase-Fielitz, A. et al. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery — a prospective cohort study. Crit. Care Med. 37, 553–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Samra, M. & Abcar, A. C. False estimates of elevated creatinine. Perm. J. 16, 51–52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ronco, C., Kellum, J. A. & Haase, M. Subclinical AKI is still AKI. Crit. Care 16, 313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Endre, Z. H. et al. Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int. 77, 1020–1030 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Parikh, C. R. et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin. J. Am. Soc. Nephrol. 8, 1079–1088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Meersch, M. et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 9, e93460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zarbock, A. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313, 2133–2141 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, Q. H. et al. Acute renal failure during sepsis: potential role of cell cycle regulation. J. Infect. 58, 459–464 (2009).

    Article  PubMed  Google Scholar 

  73. Chawla, L. S. et al. Angiotensin II for the treatment of high-output shock 3 (ATHOS-3): protocol for a phase III, double-blind, randomised controlled trial. Crit. Care Resusc. 19, 43–49 (2017).

    PubMed  Google Scholar 

  74. Khanna, A. et al. Angiotensin II for the treatment of vasodilatory shock. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1704154 (2017).

  75. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Billings, F. T.t. et al. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial. JAMA 315, 877–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Whiting, P. et al. What are the risks and benefits of temporarily discontinuing medications to prevent acute kidney injury? A systematic review and meta-analysis. BMJ Open 7, e012674 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, J., Gu, C., Gao, M., Yu, W. & Yu, Y. Preoperative statin therapy and renal outcomes after cardiac surgery: a meta-analysis and meta-regression of 59,771 patients. Can. J. Cardiol. 31, 1051–1060 (2015).

    Article  PubMed  Google Scholar 

  79. Xia, J., Qu, Y., Yin, C. & Xu, D. Preoperative rosuvastatin protects patients with coronary artery disease undergoing noncardiac surgery. Cardiology 131, 30–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Molnar, A. O. et al. Association between preoperative statin use and acute kidney injury biomarkers in cardiac surgical procedures. Ann. Thorac Surg. 97, 2081–2087 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Patti, G. et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation 114, 1455–1461 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Galyfos, G., Sianou, A. & Filis, K. Pleiotropic effects of statins in the perioperative setting. Ann. Card. Anaesth. 20, S43–S48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Layton, J. B. et al. Effect of statin use on acute kidney injury risk following coronary artery bypass grafting. Am. J. Cardiol. 111, 823–828 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Billings, F. T. 4th, Pretorius, M., Siew, E. D., Yu, C. & Brown, N. J. Early postoperative statin therapy is associated with a lower incidence of acute kidney injury after cardiac surgery. J. Cardiothorac Vasc. Anesth. 24, 913–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Welten, G. M. et al. Statin use is associated with early recovery of kidney injury after vascular surgery and improved long-term outcome. Nephrol. Dial. Transplant. 23, 3867–3873 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Zheng, Z. et al. Perioperative rosuvastatin in cardiac surgery. N. Engl. J. Med. 374, 1744–1753 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Park, J. H., Shim, J. K., Song, J. W., Soh, S. & Kwak, Y. L. Effect of atorvastatin on the incidence of acute kidney injury following valvular heart surgery: a randomized, placebo-controlled trial. Intensive Care Med. 42, 1398–1407 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Argalious, M., Xu, M., Sun, Z., Smedira, N. & Koch, C. G. Preoperative statin therapy is not associated with a reduced incidence of postoperative acute kidney injury after cardiac surgery. Anesth. Analg. 111, 324–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Prowle, J. R. et al. Pilot double-blind, randomized controlled trial of short-term atorvastatin for prevention of acute kidney injury after cardiac surgery. Nephrology (Carlton) 17, 215–224 (2012).

    Article  CAS  Google Scholar 

  90. Kharbanda, R. K., Nielsen, T. T. & Redington, A. N. Translation of remote ischaemic preconditioning into clinical practice. Lancet 374, 1557–1565 (2009).

    Article  PubMed  Google Scholar 

  91. Gassanov, N., Nia, A. M., Caglayan, E. & Er, F. Remote ischemic preconditioning and renoprotection: from myth to a novel therapeutic option? J. Am. Soc. Nephrol. 25, 216–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Jaeschke, H. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1083–G1088 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Choi, Y. S. et al. Effect of remote ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J. Thorac Cardiovasc. Surg. 142, 148–154 (2011).

    Article  PubMed  Google Scholar 

  94. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Zimmerman, R. F. et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 80, 861–867 (2011).

    Article  PubMed  Google Scholar 

  96. Menting, T. P. et al. Ischaemic preconditioning for the reduction of renal ischaemia reperfusion injury. Cochrane Database Syst. Rev. 3, CD010777 (2017).

    PubMed  Google Scholar 

  97. Haase, M., Haase-Fielitz, A., Bagshaw, S. M., Ronco, C. & Bellomo, R. Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib. Nephrol. 156, 340–353 (2007).

    Article  PubMed  Google Scholar 

  98. Bailey, M. et al. Sodium bicarbonate and renal function after cardiac surgery: a prospectively planned individual patient meta-analysis. Anesthesiology 122, 294–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Murphy, M. B. et al. Augmentation of renal blood flow and sodium excretion in hypertensive patients during blood pressure reduction by intravenous administration of the dopamine1 agonist fenoldopam. Circulation. 76, 1312–1318 (1987).

    Article  CAS  PubMed  Google Scholar 

  100. Ranucci, M. et al. Effects of fenoldopam infusion in complex cardiac surgical operations: a prospective, randomized, double-blind, placebo-controlled study. Minerva Anestesiol. 76, 249–259 (2010).

    CAS  PubMed  Google Scholar 

  101. Bove, T. et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA 312, 2244–2253 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Smith, M. N., Best, D., Sheppard, S. V. & Smith, D. C. The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia 63, 701–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Yallop, K. G., Sheppard, S. V. & Smith, D. C. The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia 63, 576–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Bragadottir, G., Redfors, B. & Ricksten, S. E. Mannitol increases renal blood flow and maintains filtration fraction and oxygenation in postoperative acute kidney injury: a prospective interventional study. Crit. Care 16, R159 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Meersch, M. et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. http://dx.doi.org/10.1007/s00134-016-4670-3 (2017).

  106. Coca, S. G. et al. Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrol. Dial. Transplant. 28, 2787–2799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ingels, C., Derese, I., Wouters, P. J., Van den Berghe, G. & Vanhorebeek, I. Soluble RAGE and the RAGE ligands HMGB1 and S100A12 in critical illness: impact of glycemic control with insulin and relation with clinical outcome. Shock 43, 109–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Westaby, S., Balacumaraswami, L. & Sayeed, R. Maximizing survival potential in very high risk cardiac surgery. Heart Fail. Clin. 3, 159–180 (2007).

    Article  PubMed  Google Scholar 

  109. Bihari, S. et al. Maintenance fluid practices in intensive care units in Australia and New Zealand. Crit. Care Resusc. 18, 89–94 (2016).

    PubMed  Google Scholar 

  110. Haase-Fielitz, A. et al. Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery. Blood Purif. 43, 298–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Young, P. et al. Effect of a buffered crystalloid solution versus saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 314, 1701–1710 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Krajewski, M. L., Raghunathan, K., Paluszkiewicz, S. M., Schermer, C. R. & Shaw, A. D. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br. J. Surg. 102, 24–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Verma, B. et al. A multicentre randomised controlled pilot study of fluid resuscitation with saline or Plasma-Lyte 148 in critically ill patients. Crit. Care Resusc. 18, 205–212 (2016).

    PubMed  Google Scholar 

  114. Myburgh, J. A. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 367, 1901–1911 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Glassford, N. J. et al. Changes in intravenous fluid use patterns in Australia and New Zealand: evidence of research translating into practice. Crit. Care Resusc. 18, 78–88 (2016).

    PubMed  Google Scholar 

  116. Fakhari, S. et al. Prophylactic furosemide infusion decreasing early major postoperative renal dysfunction in on-pump adult cardiac surgery: a randomized clinical trial. Res. Rep. Urol. 9, 5–13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bayat, F., Faritous, Z., Aghdaei, N. & Dabbagh, A. A study of the efficacy of furosemide as a prophylaxis of acute renal failure in coronary artery bypass grafting patients: a clinical trial. ARYA Atheroscler. 11, 173–178 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Lassnigg, A. et al. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J. Am. Soc. Nephrol. 11, 97–104 (2000).

    CAS  PubMed  Google Scholar 

  119. Huang, A., L. N., Martensson, J., Bellomo, R. & Cioccari, L. Pharmacodynamics of intravenous furosemide bolus in critically ill patients. Crit. Care Resusc. 19, 142–149 (2017).

    PubMed  Google Scholar 

  120. Udelson, J. E. et al. A multicenter, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J. Card. Fail. 17, 973–981 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Conlon, P. J. et al. Acute renal failure following cardiac surgery. Nephrol. Dial. Transplant. 14, 1158–1162 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Lameire, N., Kellum, J. & KDIGO AKI Guideline Work Group. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2) Crit. Care Med. 17, 205 (2013).

    Google Scholar 

  123. Zarbock, A. et al. Effect of early versus delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315, 2190–2199 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Gaudry, S. et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N. Engl. J. Med. 375, 122–133 (2016).

    Article  PubMed  Google Scholar 

  125. Garcia-Fernandez, N. et al. Timing of renal replacement therapy after cardiac surgery: a retrospective multicenter Spanish cohort study. Blood Purif. 32, 104–111 (2011).

    Article  PubMed  Google Scholar 

  126. VA/NIH Acute Renal Failure Trial Network et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 359, 7–20 (2008).

  127. RENAL Replacement Therapy Study Investigators et al. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

  128. Wang, Y. G. et al. Renal replacement therapy intensity for acute kidney injury and recovery to dialysis independence. Nephrology 20, 60–89 (2015).

    Article  CAS  Google Scholar 

  129. Kielstein, J. T., Schiffer, M. & Hafer, C. Back to the future: extended dialysis for treatment of acute kidney injury in the intensive care unit. J. Nephrol. 23, 494–501 (2010).

    PubMed  Google Scholar 

  130. Kielstein, J. T. et al. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am. J. Kidney Dis. 43, 342–349 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Vinsonneau, C. et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 368, 379–385 (2006).

    Article  PubMed  Google Scholar 

  132. Schneider, A. G. et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 39, 987–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Badawy, S., H. A. & Samir, E. M. A prospective randomized comparative pilot trial on extended daily dialysis versus continuous venovenous hemodiafiltration in acute kidney injury after cardiac surgery. Egypt. J. Cardiothorac. Anesth. 7, 69–73 (2013).

    Article  Google Scholar 

  134. Vidal, S. et al. Evaluation of continuous veno-venous hemofiltration for the treatment of cardiogenic shock in conjunction with acute renal failure after cardiac surgery. Eur. J. Cardiothorac Surg. 36, 572–579 (2009).

    Article  PubMed  Google Scholar 

  135. Wu, B. et al. Relationship among mortality of patients with acute kidney injury after cardiac surgery, fluid balance and ultrafiltration of renal replacement therapy: an observational study. Blood Purif. 44, 32–39 (2017).

    Article  PubMed  Google Scholar 

  136. Corredor, C., Thomson, R. & Al-Subaie, N. Long-term consequences of acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J. Cardiothorac Vasc. Anesth. 30, 69–75 (2016).

    Article  PubMed  Google Scholar 

  137. Dent, C. L. et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit. Care 11, R127 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zappitelli, M. et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 76, 885–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Morgan, C. J. et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J. Pediatr. 162, 120–127 e1 (2013).

    Article  PubMed  Google Scholar 

  140. Greenberg, J. H. et al. Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 170, 1071–1078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bunchman, T. E. et al. Pediatric acute renal failure: outcome by modality and disease. Pediatr. Nephrol. 16, 1067–1071 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Pedersen, K. R. et al. Risk factors for acute renal failure requiring dialysis after surgery for congenital heart disease in children. Acta Anaesthesiol. Scand. 51, 1344–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Santiago, M. J. et al. Continuous renal replacement therapy in children after cardiac surgery. J. Thorac Cardiovasc. Surg. 146, 448–454 (2013).

    Article  PubMed  Google Scholar 

  144. Park, S. K. et al. Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: a retrospective observational study. PLoS ONE 11, e0166328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, S. H. et al. Acute kidney injury following cardiopulmonary bypass in children- risk factors and outcomes. Circ. J. http://dx.doi.org/10.1253/circj.CJ-17-0075 (2017).

  146. Bennett, M. R. et al. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol. 30, 677–685 (2015).

    Article  PubMed  Google Scholar 

  147. Krawczeski, C. D. et al. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J. Pediatr. 158, 1009–1015.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Haase, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zappitelli, M. et al. Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int. 80, 655–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hornik, C. P. et al. Serum brain natriuretic peptide and risk of acute kidney injury after cardiac operations in children. Ann. Thorac Surg. 97, 2142–2147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kwiatkowski, D. M. & Krawczeski, C. D. Acute kidney injury and fluid overload in infants and children after cardiac surgery. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-017-3643-2 (2017).

  152. Axelrod, D. M. et al. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr. Crit. Care Med. 15, 21–27 (2014).

    Article  PubMed  Google Scholar 

  153. Costello, J. M. et al. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr. Crit. Care Med. 7, 28–33 (2006).

    Article  PubMed  Google Scholar 

  154. Osswald, H., Gleiter, C. & Muhlbauer, B. Therapeutic use of theophylline to antagonize renal effects of adenosine. Clin. Nephrol. 43 (Suppl. 1), S33–S37 (1995).

    PubMed  Google Scholar 

  155. Onder, A. M. et al. Comparison of intraoperative aminophylline versus furosemide in treatment of oliguria during pediatric cardiac surgery. Pediatr. Crit. Care Med. 17, 753–763 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Axelrod, D. M., Sutherland, S. M., Anglemyer, A., Grimm, P. C. & Roth, S. J. A. Double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following congenital heart surgery with cardiopulmonary bypass. Pediatr. Crit. Care Med. 17, 135–143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mehta, R. L., Pascual, M. T., Soroko, S., Chertow, G. M. & Group, P. S. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288, 2547–2553 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Sampath, S. et al. The efficacy of loop diuretics in acute renal failure: assessment using Bayesian evidence synthesis techniques. Crit. Care Med. 35, 2516–2524 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Sanchez-de-Toledo, J. et al. Early initiation of renal replacement therapy in pediatric heart surgery is associated with lower mortality. Pediatr. Cardiol. 37, 623–628 (2016).

    Article  PubMed  Google Scholar 

  160. Sasser, W. C. et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit. Heart Dis. 9, 106–115 (2014).

    Article  PubMed  Google Scholar 

  161. Kwiatkowski, D. M. et al. Peritoneal dialysis versus furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 171, 357–364 (2017).

    Article  PubMed  Google Scholar 

  162. Macken, L. et al. Continuous intra-arterial blood glucose monitoring using quenched fluorescence sensing in intensive care patients after cardiac surgery: phase II of a product development study. Crit. Care Resusc. 17, 190–196 (2015).

    PubMed  Google Scholar 

  163. Ancona, P. et al. The performance of flash glucose monitoring in critically ill patients with diabetes. Crit Care Resusc. 19, 167–174 (2017).

    PubMed  Google Scholar 

  164. Ranucci, M. et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann. Thorac. Surg. 80, 2213–2220 (2005).

    Article  PubMed  Google Scholar 

  165. Goren, O. & Matot, I. Perioperative acute kidney injury. Br. J. Anaesth. 115, ii3–ii14 (2015).

    Article  PubMed  Google Scholar 

  166. Masetti, P., Murphy, S. F. & Kouchoukos, N. T. . Vasopressin therapy for vasoplegic syndrome following cardiopulmonary bypass. J. Card. Surg. 17, 485–489 (2002).

    Article  PubMed  Google Scholar 

  167. Lomoritov, V. V. et al. Low cardiac output syndrome after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 31, 291–308 (2017).

    Article  Google Scholar 

  168. Nielsen, B. S. et al. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38, 414–420 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Au, V., Feit, J., Barasch, J., Sladen, R. N. & Wagener, G. Urinary neutrophil gelatinase-associated lipocalin (NGAL) distinguishes sustained from transient acute kidney injury after general surgery. Kidney Int. Rep. 1, 3–9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Haase-Fielitz, A., Haase, M. & Devarajan, P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann. Clin. Biochem. 51, 335–351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Krawczeski, C. D. et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J. Am. Coll. Cardiol. 58, 2301–2309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Peco-Antic, A. et al. Biomarkers of acute kidney injury in pediatric cardiac surgery. Clin. Biochem. 46, 1244–1251 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Ghonemy, T. A. & Amro, G. M. Plasma neutrophil gelatinase-associated lipocalin (NGAL) and plasma cystatin C (CysC) as biomarker of acute kidney injury after cardiac surgery. Saudi J. Kidney Dis. Transpl. 25, 582–588 (2014).

    Article  PubMed  Google Scholar 

  174. Koyner, J. L. et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 74, 1059–1069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Faubel, S. & Edelstein, C. L. Caspases as drug targets in ischemic organ injury. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 269–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Jayaraman, R. et al. Post cardiac surgery acute kidney injury: a woebegone status rejuvenated by the novel biomarkers. Nephrourol. Mon. 6, e19598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Parikh, C. R. et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 70, 199–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Koyner, J. L. et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Soc. Nephrol. 23, 905–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ferguson, M. A. et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int. 77, 708–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Kamijo-Ikemori, A. & Kimura, K. Urinary liver-type fatty acid binding protein and chronic kidney disease. Indian J. Nephrol. 25, 263–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Engers, R., Springer, E., Michiels, F., Collard, J. G. & Gabbert, H. E. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J. Biol. Chem. 276, 41889–41897 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Meersch, M. et al. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS ONE 9, e110865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Shibata, F. et al. Roundabout 4 is expressed on hematopoietic stem cells and potentially involved in the niche-mediated regulation of the side population phenotype. Stem Cells 27, 183–190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Burke-Gaffney, A., Svermova, T., Mumby, S., Finney, S. J. & Evans, T. W. Raised plasma Robo4 and cardiac surgery-associated acute kidney injury. PLoS ONE 9, e111459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ranganathan, P., Jayakumar, C., Mohamed, R., Weintraub, N. L. & Ramesh, G. Semaphorin 3A inactivation suppresses ischemia–reperfusion-induced inflammation and acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F183–F194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Jayakumar, C. et al. Semaphorin 3A is a new early diagnostic biomarker of experimental and pediatric acute kidney injury. PLoS ONE 8, e58446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ramesh, G., Krawczeski, C. D., Woo, J. G., Wang, Y. & Devarajan, P. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery. Clin. J. Am. Soc. Nephrol. 5, 395–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Schefold, J. C. et al. The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit. Care 18, R11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Gallagher, M. G. Wong and J. Knight for assistance with review of the draft manuscript. Y.W. was supported by a John Chalmers Clinical Research Fellowship (supported by Servier).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. researched data for the article, R.B. and Y.W. made substantial contributions to discussions of the content, Y.W. wrote the article and R.B. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Rinaldo Bellomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Randomized controlled trials of preventive agents for CSA-AKI (DOC 340 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bellomo, R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol 13, 697–711 (2017). https://doi.org/10.1038/nrneph.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing