Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ophthalmic manifestations of inherited neurodegenerative disorders

Key Points

  • Inherited neurodegenerative diseases are associated with a wide range of ocular abnormalities, which can cause substantial disability

  • Ophthalmic findings can aid the genetic diagnosis of some neurodegenerative conditions; this diagnosis might, in turn, direct the clinician towards careful examination of the visual systems to provide useful adjunctive information

  • In some patients, ophthalmic manifestations are the earliest symptoms of inherited neurodegenerative disease

  • An increasing body of evidence indicates that ophthalmic findings can act as surrogate markers of disease progression in patients with inherited neurodegenerative conditions

  • Optical coherence tomography is emerging as a useful tool for quantifying retinal and optic nerve findings in patients with neurodegenerative disease

  • The role of mitochondrial dysfunction in inherited neurodegenerative disease has been well established, and ophthalmic involvement is a common manifestation of this dysfunction

Abstract

Ophthalmic findings are common features of neurodegenerative disorders and, in addition to being clinically important, have emerged as potentially useful biomarkers of disease progression in several conditions. Clinically, these visual system abnormalities can be a clue to diagnosis, as well as being a prominent cause of disability in affected patients. In this Review, we describe the various afferent visual system and other ophthalmic features of inherited neurodegenerative disorders, including the muscular dystrophies, Friedreich ataxia, the spinocerebellar ataxias, hereditary spastic paraplegia, Charcot–Marie–Tooth disease, and other conditions. We focus on the expanding role of optical coherence tomography in diagnostic imaging of the retina and optic nerve head, and the possible use of ophthalmic findings as biomarkers of disease severity in hereditary neurodegenerative disorders. In addition, we discuss the ophthalmic manifestations and treatment implications of mitochondrial dysfunction, which is a feature of many inherited neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macular pigment changes in myotonic dystrophy type 1.
Figure 2: Epiretinal membrane in myotonic dystrophy type 1.
Figure 3: Spectral domain optical coherence tomography of RNFL thickness in Friedreich ataxia.

Similar content being viewed by others

References

  1. Chung, K. W. et al. Early onset severe and late-onset mild Charcot–Marie–Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129, 2103–2118 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Fortuna, F. et al. Visual system involvement in patients with Friedreich's ataxia. Brain 132, 116–123 (2009).

    Article  PubMed  Google Scholar 

  3. Klebe, S. et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 135, 2980–2993 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pula, J. H., Gomez, C. M. & Kattah, J. C. Ophthalmologic features of the common spinocerebellar ataxias. Curr. Opin. Ophthalmol. 21, 447–453 (2010).

    Article  PubMed  Google Scholar 

  5. Grainger, B. T., Papchenko, T. L. & Danesh-Meyer, H. V. Optic nerve atrophy in adrenoleukodystrophy detectable by optic coherence tomography. J. Clin. Neurosci. 17, 122–124 (2010).

    Article  PubMed  Google Scholar 

  6. Diago, T., Valls, B. & Pulido, J. S. Coats' disease associated with muscular dystrophy treated with ranibizumab. Eye (Lond.) 24, 1295–1296 (2010).

    Article  CAS  Google Scholar 

  7. Puech, B. et al. Kjellin syndrome: long-term neuro-ophthalmologic follow-up and novel mutations in the SPG11 gene. Ophthalmology 118, 564–573 (2011).

    Article  PubMed  Google Scholar 

  8. Fitzsimons, R. B., Gurwin, E. B. & Bird, A. C. Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy. A general association with genetic and therapeutic implications. Brain 110, 631–648 (1987).

    Article  PubMed  Google Scholar 

  9. Aleman, T. S. et al. Spinocerebellar ataxia type 7 (SCA7) shows a cone–rod dystrophy phenotype. Exp. Eye Res. 74, 737–745 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Kersten, H. M. et al. Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1. J. Neurol. 261, 37–44 (2014).

    Article  PubMed  Google Scholar 

  11. Yu-Wai-Man, P., Griffiths, P. G. & Chinnery, P. F. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 30, 81–114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frohman, E. M. et al. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat. Clin. Pract. Neurol. 4, 664–675 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenfield, D. S. & Weinreb, R. N. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am. J. Ophthalmol. 145, 598–603 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Milani, P., Raimondi, G., Morale, D. & Scialdone, A. Biomicroscopy versus optical coherence tomography screening of epiretinal membranes in patients undergoing cataract surgery. Retina 32, 897–904 (2012).

    Article  PubMed  Google Scholar 

  16. Lalwani, G. A. et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am. J. Ophthalmol. 148, 43–58.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Marziani, E. et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer's disease using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 54, 5953–5958 (2013).

    Article  PubMed  Google Scholar 

  18. Satue, M. et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson's disease patients. Eye (Lond.) 27, 507–514 (2013).

    Article  CAS  Google Scholar 

  19. Anderson, T. J. & MacAskill, M. R. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol. 9, 74–85 (2013).

    Article  PubMed  Google Scholar 

  20. Emery, A. E. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul. Disord. 1, 19–29 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 69, 385 (1992).

    CAS  PubMed  Google Scholar 

  22. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Groh, W. J., Lowe, M. R. & Zipes, D. P. Severity of cardiac conduction involvement and arrhythmias in myotonic dystrophy type 1 correlates with age and CTG repeat length. J. Cardiovasc. Electrophysiol. 13, 444–448 (2002).

    Article  PubMed  Google Scholar 

  24. Harley, H. G. et al. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 52, 1164–1174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosa, N. et al. Low intraocular pressure resulting from ciliary body detachment in patients with myotonic dystrophy. Ophthalmology 118, 260–264 (2011).

    Article  PubMed  Google Scholar 

  26. Betten, M. G., Bilchik, R. C. & Smith, M. E. Pigmentary retinopathy of myotonic dystrophy. Am. J. Ophthalmol. 72, 720–723 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. Eshaghian, J., March, W. F., Goossens, W. & Rafferty, N. S. Ultrastructure of cataract in myotonic dystrophy. Invest. Ophthalmol. Vis. Sci. 17, 289–293 (1978).

    CAS  PubMed  Google Scholar 

  28. Doherty, M., Winterton, R. & Griffiths, P. G. Eyelid surgery in ocular myopathies. Orbit 32, 12–15 (2013).

    Article  PubMed  Google Scholar 

  29. Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Ranum, L. P. & Day, J. W. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Curr. Neurol. Neurosci. Rep. 2, 465–470 (2002).

    Article  PubMed  Google Scholar 

  31. Ginsberg, J., Hamblet, J. & Menefee, M. Ocular abnormality in myotonic dystrophy. Ann. Ophthalmol. 10, 1021–1028 (1978).

    CAS  PubMed  Google Scholar 

  32. Yanoff, M. & Fine, B. S. Ocular Pathology: A Text and Atlas 2nd edn (Harper & Row, 1982).

    Google Scholar 

  33. Sarks, J. et al. Retinal changes in myotonic dystrophy: a clinicomorphological study. Aust. N. Z. J. Ophthalmol. 13, 19–36 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Burian, H. M. & Burns, C. A. Ocular changes in myotonic dystrophy. Am. J. Ophthalmol. 63, 22–34 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Ghazi-Nouri, S. M., Tranos, P. G., Rubin, G. S., Adams, Z. C. & Charteris, D. G. Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery. Br. J. Ophthalmol. 90, 559–562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gamez, J., Montane, D., Martorell, L., Minoves, T. & Cervera, C. Bilateral optic nerve atrophy in myotonic dystrophy. Am. J. Ophthalmol. 131, 398–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Ashizawa, T. et al. Diagnostic value of ophthalmologic findings in myotonic dystrophy: comparison with risks calculated by haplotype analysis of closely linked restriction fragment length polymorphisms. Am. J. Med. Genet. 42, 55–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Schara, U. & Schoser, B. G. Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin. Pediatr. Neurol. 13, 71–79 (2006).

    Article  PubMed  Google Scholar 

  39. Vos, T. A. 25 years dystrophia myotonica (D.M.). Ophthalmologica 141, 37–45 (1961).

    Article  CAS  PubMed  Google Scholar 

  40. Hayasaka, S. et al. Ciliary and retinal changes in myotonic dystrophy. Arch. Ophthalmol. 102, 88–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Khan, A. R. & Brubaker, R. F. Aqueous humor flow and flare in patients with myotonic dystrophy. Invest. Ophthalmol. Vis. Sci. 34, 3131–3139 (1993).

    CAS  PubMed  Google Scholar 

  42. Walker, S. D., Brubaker, R. F. & Nagataki, S. Hypotony and aqueous humor dynamics in myotonic dystrophy. Invest. Ophthalmol. Vis. Sci. 22, 744–751 (1982).

    CAS  PubMed  Google Scholar 

  43. Rosa, N. et al. Corneal thickness and endothelial cell characteristics in patients with myotonic dystrophy. Ophthalmology 117, 223–225 (2010).

    Article  PubMed  Google Scholar 

  44. Wong, V. A., Beckingsale, P. S., Oley, C. A. & Sullivan, T. J. Management of myogenic ptosis. Ophthalmology 109, 1023–1031 (2002).

    Article  PubMed  Google Scholar 

  45. Bollinger, K. E. et al. Hypermetropia and esotropia in myotonic dystrophy. J. AAPOS 12, 69–71 (2008).

    Article  PubMed  Google Scholar 

  46. Ekstrom, A.-B., Tulinius, M., Sjostrom, A. & Aring, E. Visual function in congenital and childhood myotonic dystrophy type 1. Ophthalmology 117, 976–982 (2010).

    Article  PubMed  Google Scholar 

  47. Tawil, R. Facioscapulohumeral muscular dystrophy. Neurotherapeutics 5, 601–606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tawil, R., Figlewicz, D. A., Griggs, R. C. & Weiffenbach, B. Facioscapulohumeral dystrophy: a distinct regional myopathy with a novel molecular pathogenesis. FSH Consortium. Ann. Neurol. 43, 279–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Wijmenga, C. et al. Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 336, 651–653 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. van Deutekom, J. C. et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2, 2037–2042 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Bengtsson, U., Altherr, M. R., Wasmuth, J. J. & Winokur, S. T. High resolution fluorescence in situ hybridization to linearly extended DNA visually maps a tandem repeat associated with facioscapulohumeral muscular dystrophy immediately adjacent to the telomere of 4q. Hum. Mol. Genet. 3, 1801–1805 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Gurwin, E. B., Fitzsimons, R. B., Sehmi, K. S. & Bird, A. C. Retinal telangiectasis in facioscapulohumeral muscular dystrophy with deafness. Arch. Ophthalmol. 103, 1695–1700 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. Taylor, D. A. et al. Facioscapulohumeral dystrophy associated with hearing loss and Coats syndrome. Ann. Neurol. 12, 395–398 (1982).

    Article  CAS  PubMed  Google Scholar 

  54. Bindoff, L. A. et al. Severe fascioscapulohumeral muscular dystrophy presenting with Coats' disease and mental retardation. Neuromuscul. Disord. 16, 559–563 (2006).

    Article  PubMed  Google Scholar 

  55. Shields, C. L. et al. Neovascular glaucoma from advanced Coats disease as the initial manifestation of facioscapulohumeral dystrophy in a 2-year-old child. Arch. Ophthalmol. 125, 840–842 (2007).

    Article  PubMed  Google Scholar 

  56. Fitzsimons, R. B. Retinal vascular disease and the pathogenesis of facioscapulohumeral muscular dystrophy. A signalling message from Wnt? Neuromuscul. Disord. 21, 263–271 (2011).

    Article  PubMed  Google Scholar 

  57. Rosa, N. et al. Intraocular pressure in patients with muscular dystrophies. Ophthalmology 120, 1306–1307.e1 (2013).

    Article  PubMed  Google Scholar 

  58. Shy, M. E., Garbern, J. Y. & Kamholz, J. Hereditary motor and sensory neuropathies: a biological perspective. Lancet Neurol. 1, 110–118 (2002).

    Article  PubMed  Google Scholar 

  59. Zuchner, S. & Vance, J. M. Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat. Clin. Pract. Neurol. 2, 45–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Pareyson, D. & Marchesi, C. Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol. 8, 654–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Timmerman, V., Clowes, V. E. & Reid, E. Overlapping molecular pathological themes link Charcot–Marie–Tooth neuropathies and hereditary spastic paraplegias. Exp. Neurol. 246, 14–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Li, J. Inherited neuropathies. Semin. Neurol. 32, 204–214 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zuchner, S. et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59, 276–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet. 36, 449–451 (2004).

    Article  PubMed  CAS  Google Scholar 

  65. Pich, S. et al. The Charcot–Marie–Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet. 14, 1405–1415 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, H. & Chan, D. C. Critical dependence of neurons on mitochondrial dynamics. Curr. Opin. Cell Biol. 18, 453–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Loiseau, D. et al. Mitochondrial coupling defect in Charcot–Marie–Tooth type 2A disease. Ann. Neurol. 61, 315–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Brockmann, K. et al. Cerebral involvement in axonal Charcot–Marie–Tooth neuropathy caused by mitofusin2 mutations. J. Neurol. 255, 1049–1058 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Houlden, H., Reilly, M. M. & Smith, S. Pupil abnormalities in 131 cases of genetically defined inherited peripheral neuropathy. Eye (Lond.) 23, 966–974 (2009).

    Article  CAS  Google Scholar 

  70. Yu-Wai-Man, P. et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 133, 771–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gowrisankaran, S., Anastasakis, A., Fishman, G. A. & Alexander, K. R. Structural and functional measures of inner retinal integrity following visual acuity improvement in a patient with hereditary motor and sensory neuropathy type VI. Ophthalmic Genet. 32, 188–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Campuzano, V. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Harding, A. E. Clinical features and classification of inherited ataxias. Adv. Neurol. 61, 1–14 (1993).

    CAS  PubMed  Google Scholar 

  74. Durr, A. et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Dunaief, J. L. Ironing out neurodegeneration: iron chelation for neuroprotection. Free Radic. Biol. Med. 51, 1480–1481 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fahey, M. C. et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131, 1035–1045 (2008).

    Article  PubMed  Google Scholar 

  77. Furman, J. M., Perlman, S. & Baloh, R. W. Eye movements in Friedreich's ataxia. Arch. Neurol. 40, 343–346 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Hocking, D. R. et al. Ocular motor fixation deficits in Friedreich ataxia. Cerebellum 9, 411–418 (2010).

    Article  PubMed  Google Scholar 

  79. Spieker, S. et al. Fixation instability and oculomotor abnormalities in Friedreich's ataxia. J. Neurol. 242, 517–521 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Carroll, W. M., Kriss, A., Baraitser, M., Barrett, G. & Halliday, A. M. The incidence and nature of visual pathway involvement in Friedreich's ataxia. A clinical and visual evoked potential study of 22 patients. Brain 103, 413–434 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. Noval, S., Contreras, I., Sanz-Gallego, I., Manrique, R. K. & Arpa, J. Ophthalmic features of Friedreich ataxia. Eye (Lond.) 26, 315–320 (2012).

    Article  CAS  Google Scholar 

  82. Seyer, L. A. et al. Analysis of the visual system in Friedreich ataxia. J. Neurol. 260, 2362–2369 (2013).

    Article  PubMed  Google Scholar 

  83. Duenas, A. M., Goold, R. & Giunti, P. Molecular pathogenesis of spinocerebellar ataxias. Brain 129, 1357–1370 (2006).

    Article  PubMed  Google Scholar 

  84. Paulson, H. L. The spinocerebellar ataxias. J. Neuroophthalmol. 29, 227–237 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lynch, D. R. & Farmer, J. Practical approaches to neurogenetic disease. J. Neuroophthalmol. 22, 297–304 (2002).

    Article  PubMed  Google Scholar 

  86. Moschner, C., Perlman, S. & Baloh, R. W. Comparison of oculomotor findings in the progressive ataxia syndromes. Brain 117, 15–25 (1994).

    Article  PubMed  Google Scholar 

  87. Manto, M.-U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4, 2–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Vaclavik, V., Borruat, F.-X., Ambresin, A. & Munier, F. L. Novel maculopathy in patients with spinocerebellar ataxia type 1 autofluorescence findings and functional characteristics. JAMA Ophthalmol. 131, 536–538 (2013).

    Article  PubMed  Google Scholar 

  89. Abe, T., Abe, K., Aoki, M., Itoyama, Y. & Tamai, M. Ocular changes in patients with spinocerebellar degeneration and repeated trinucleotide expansion of spinocerebellar ataxia type 1 gene. Arch. Ophthalmol. 115, 231–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, W. Y. et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch. Neurol. 60, 858–863 (2003).

    Article  PubMed  Google Scholar 

  91. Stricker, S. et al. Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PLoS ONE 6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pogacar, S., Ambler, M., Conklin, W. J., O'Neil, W. A. & Lee, H. Y. Dominant spinopontine atrophy. Report of two additional members of family W. Arch. Neurol. 35, 156–162 (1978).

    Article  CAS  PubMed  Google Scholar 

  93. Alvarez, G. et al. Optical coherence tomography findings in spinocerebellar ataxia-3. Eye (Lond.) 27, 1376–1381 (2013).

    Article  CAS  Google Scholar 

  94. Jardim, L. B. et al. Neurologic findings in Machado–Joseph disease: relation with disease duration, subtypes, and (CAG)n . Arch. Neurol. 58, 899–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Pula, J. H. et al. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 35, 108–114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Miller, R. C., Tewari, A., Miller, J. A., Garbern, J. & Van Stavern, G. P. Neuro-ophthalmologic features of spinocerebellar ataxia type 7. J. Neuroophthalmology 29, 180–186 (2009).

    Article  Google Scholar 

  97. Michalik, A., Martin, J. J. & Van Broeckhoven, C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur. J. Hum. Genet. 12, 2–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Thurtell, M. J. et al. Two patients with spinocerebellar ataxia type 7 presenting with profound binocular visual loss yet minimal ophthalmoscopic findings. J. Neuroophthalmol. 29, 187–191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ahn, J. K., Seo, J.-M., Chung, H. & Yu, H. G. Anatomical and functional characteristics in atrophic maculopathy associated with spinocerebellar ataxia type 7. Am. J. Ophthalmol. 139, 923–925 (2005).

    Article  PubMed  Google Scholar 

  100. Hugosson, T., Granse, L., Ponjavic, V. & Andreasson, S. Macular dysfunction and morphology in spinocerebellar ataxia type 7 (SCA 7). Ophthalmic Genet. 30, 1–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Horton, L. C. et al. Spinocerebellar ataxia type 7: clinical course, phenotype–genotype correlations, and neuropathology. Cerebellum 12, 176–193 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bouchard, J. P. et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul. Disord. 8, 474–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Gerwig, M. et al. Characteristic MRI and funduscopic findings help diagnose ARSACS outside Quebec. Neurology 75, 2133 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Takiyama, Y. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuropathology 26, 368–375 (2006).

    Article  PubMed  Google Scholar 

  105. Garcia-Martin, E. et al. Retinal segmentation as noninvasive technique to demonstrate hyperplasia in ataxia of Charlevoix-Saguenay. Invest. Ophthalmol. Vis. Sci. 54, 7137–7142 (2013).

    Article  PubMed  Google Scholar 

  106. Baets, J. et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 75, 1181–1188 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Ogawa, T. et al. Identification of a SACS gene missense mutation in ARSACS. Neurology 62, 107–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Garcia-Martin, E. et al. Retinal nerve fibre layer thickness in ARSACS: myelination or hypertrophy? Br. J. Ophthalmol. 97, 238–241 (2013).

    Article  PubMed  Google Scholar 

  109. Vingolo, E. M. et al. Myelinated retinal fibers in autosomal recessive spastic ataxia of Charlevoix-Saguenay. Eur. J. Neurol. 18, 1187–1190 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Desserre, J. et al. Thickening of peripapillar retinal fibers for the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Cerebellum 10, 758–762 (2011).

    Article  PubMed  Google Scholar 

  111. Girard, M. et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc. Natl Acad. Sci. USA 109, 1661–1666 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Harding, A. E. Classification of the hereditary ataxias and paraplegias. Lancet 1, 1151–1155 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Salinas, S., Proukakis, C., Crosby, A. & Warner, T. T. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 7, 1127–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Schule, R. & Schols, L. Genetics of hereditary spastic paraplegias. Semin. Neurol. 31, 484–493 (2011).

    Article  PubMed  Google Scholar 

  115. Fink, J. K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 126, 307–328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roxburgh, R. H. et al. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry. J. Neurol. 260, 1286–1294 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Wiethoff, S., Zhour, A., Schöls, L. & Fischer, M. D. Retinal nerve fibre layer loss in hereditary spastic paraplegias is restricted to complex phenotypes. BMC Neurol. 12, 143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973–983 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Martinelli, P. & Rugarli, E. I. Emerging roles of mitochondrial proteases in neurodegeneration. Biochim. Biophys. Acta 1797, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Pellegrini, L. & Scorrano, L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ. 14, 1275–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Shimazaki, H. et al. A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J. Med. Genet. 49, 777–784 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Stevanin, G. et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat. Genet. 39, 366–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Hanein, S. et al. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am. J. Hum. Genet. 82, 992–1002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Webb, S., Patterson, V. & Hutchinson, M. Two families with autosomal recessive spastic paraplegia, pigmented maculopathy, and dementia. J. Neurol. Neurosurg. Psychiatry 63, 628–632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dusek, P. & Schneider, S. A. Neurodegeneration with brain iron accumulation. Curr. Opin. Neurol. 25, 499–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Hartig, M. B. et al. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 89, 543–550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dezfouli, M. A. et al. PANK2 and C19orf12 mutations are common causes of neurodegeneration with brain iron accumulation. Mov. Disord. 28, 228–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Kazek, B. et al. A novel PANK2 gene mutation: clinical and molecular characteristics of patients short communication. J. Child Neurol. 22, 1256–1259 (2007).

    Article  PubMed  Google Scholar 

  129. Hartig, M. B., Prokisch, H., Meitinger, T. & Klopstock, T. Pantothenate kinase-associated neurodegeneration. Curr. Drug Targets 13, 1182–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome. Nat. Genet. 28, 345–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Mitamura, Y. et al. Diagnostic imaging in patients with retinitis pigmentosa. J. Med. Invest. 59, 1–11 (2012).

    Article  PubMed  Google Scholar 

  132. Hartig, M., Prokisch, H., Meitinger, T. & Klopstock, T. Mitochondrial membrane protein-associated neurodegeneration (MPAN). Int. Rev. Neurobiol. 110, 73–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Horvath, R. et al. A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Mov. Disord. 27, 789–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Kruer, M. C. et al. C19orf12 mutation leads to a pallido-pyramidal syndrome. Gene 537, 352–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Schulte, E. C. et al. Mitochondrial membrane protein associated neurodegenration: a novel variant of neurodegeneration with brain iron accumulation. Mov. Disord. 28, 224–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Wolkow, N. et al. Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation. Arch. Ophthalmol. 129, 1466–1474 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moser, H. W. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain 120, 1485–1508 (1997).

    Article  PubMed  Google Scholar 

  138. Semmler, A., Kohler, W., Jung, H. H., Weller, M. & Linnebank, M. Therapy of X-linked adrenoleukodystrophy. Expert Rev. Neurother. 8, 1367–1379 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Mosser, J. et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Schaumburg, H. H., Powers, J. M., Raine, C. S., Suzuki, K. & Richardson, E. P. Jr. Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch. Neurol. 32, 577–591 (1975).

    Article  CAS  PubMed  Google Scholar 

  141. Kaplan, P. W. et al. Visual system abnormalities in adrenomyeloneuropathy. Ann. Neurol. 37, 550–552 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Traboulsi, E. I. & Maumenee, I. H. Ophthalmologic manifestations of X-linked childhood adrenoleukodystrophy. Ophthalmology 94, 47–52 (1987).

    Article  CAS  PubMed  Google Scholar 

  143. Sack, G. H. Jr, Raven, M. B. & Moser, H. W. Color vision defects in adrenomyeloneuropathy. Am. J. Hum. Genet. 44, 794–798 (1989).

    PubMed  PubMed Central  Google Scholar 

  144. Wray, S. H., Cogan, D. G., Kuwabara, T., Schaumburg, H. H. & Powers, J. M. Adrenoleukodystrophy with disease of the eye and optic nerve. Am. J. Ophthalmol. 82, 480–485 (1976).

    Article  CAS  PubMed  Google Scholar 

  145. Wilson, W. B. The visual system manifestations of adrenoleukodystrophy. Neuroophthalmology 1, 175–183 (1981).

    Article  Google Scholar 

  146. Cohen, S. M. et al. Ocular histopathologic studies of neonatal and childhood adrenoleukodystrophy. Am. J. Ophthalmol. 95, 82–96 (1983).

    Article  CAS  PubMed  Google Scholar 

  147. Glasgow, B. J., Brown, H. H., Hannah, J. B. & Foos, R. Y. Ocular pathologic findings in neonatal adrenoleukodystrophy. Ophthalmology 94, 1054–1060 (1987).

    Article  CAS  PubMed  Google Scholar 

  148. Goedert, M. & Spillantini, M. G. A century of Alzheimer's disease. Science 314, 777–781 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Alonso Vilatela, M. E., Lopez-Lopez, M. & Yescas-Gomez, P. Genetics of Alzheimer's disease. Arch. Med. Res. 43, 622–631 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Calkins, M. J., Manczak, M., Mao, P., Shirendeb, U. & Reddy, P. H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum. Mol. Genet. 20, 4515–4529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bekris, L. M., Yu, C.-E., Bird, T. D. & Tsuang, D. W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 23, 213–227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Campion, D. et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 65, 664–670 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu, Y. et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography. Neurosci. Lett. 480, 69–72 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Danesh-Meyer, H. V., Birch, H. F., Ku, J. Y., Carroll, S. M. & Gamble, G. M. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67, 1852–1854 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Tsai, C. S. et al. Optic nerve head and nerve fiber layer in Alzheimer's disease. Arch. Ophthalmol. 109, 199–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  156. Iseri, P. K., Altinas, O., Tokay, T. & Yuksel, N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J. Neuroophthalmol. 26, 18–24 (2006).

    Article  PubMed  Google Scholar 

  157. Berisha, F., Feke, G. T., Trempe, C. L., McMeel, J. W. & Schepens, C. L. Retinal abnormalities in early Alzheimer's disease. Invest. Ophthalmol. Vis. Sci. 48, 2285–2289 (2007).

    Article  PubMed  Google Scholar 

  158. Paquet, C. et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Neurosci. Lett. 420, 97–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Valenti, D. A. Neuroimaging of retinal nerve fiber layer in AD using optical coherence tomography. Neurology 69, 1060 (2007).

    Article  PubMed  Google Scholar 

  160. Kesler, A., Vakhapova, V., Korczyn, A. D., Naftaliev, E. & Neudorfer, M. Retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Clin. Neurol. Neurosurg. 113, 523–526 (2011).

    Article  PubMed  Google Scholar 

  161. Kirbas, S., Turkyilmaz, K., Anlar, O., Tufekci, A. & Durmus, M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J. Neuroophthalmol. 33, 58–61 (2013).

    Article  PubMed  Google Scholar 

  162. Mizuno, Y. et al. Progress in the pathogenesis and genetics of Parkinson's disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2215–2227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Singleton, A. B., Farrer, M. J. & Bonifati, V. The genetics of Parkinson's disease: progress and therapeutic implications. Mov. Disord. 28, 14–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fujioka, S. & Wszolek, Z. K. Update on genetics of parkinsonism. Neurodegener. Dis. 10, 257–260 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Altintas, O., Iseri, P., Ozkan, B. & Caglar, Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. Doc. Ophthalmol. 116, 137–146 (2008).

    Article  PubMed  Google Scholar 

  166. Cubo, E., Tedejo, R. P., Rodriguez Mendez, V., Lopez Pena, M. J. & Trejo Gabriel Y Galan, J. M. Retina thickness in Parkinson's disease and essential tremor. Mov. Disord. 25, 2461–2462 (2010).

    Article  PubMed  Google Scholar 

  167. La Morgia, C. et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur. J. Neurol. 20, 198–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Inzelberg, R., Ramirez, J. A., Nisipeanu, P. & Ophir, A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 44, 2793–2797 (2004).

    Article  PubMed  Google Scholar 

  169. Garcia-Martin, E. et al. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson's disease. Ophthalmology 119, 2161–2167 (2012).

    Article  PubMed  Google Scholar 

  170. Satue, M. et al. Retinal thinning and correlation with functional disability in patients with Parkinson's disease. Br. J. Ophthalmol. 98, 350–355 (2013).

    Article  PubMed  Google Scholar 

  171. Albrecht, P. et al. Optical coherence tomography in parkinsonian syndromes. PLoS ONE 7, e34891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tsironi, E. E. et al. Perimetric and retinal nerve fiber layer findings in patients with Parkinson's disease. BMC Ophthalmol. 12, 54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Archibald, N. K., Clarke, M. P., Mosimann, U. P. & Burn, D. J. Retinal thickness in Parkinson's disease. Parkinsonism Relat. Disord. 17, 431–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Archibald, N. K., Clarke, M. P., Mosimann, U. P. & Burn, D. J. Visual symptoms in Parkinson's disease and Parkinson's disease dementia. Mov. Disord. 26, 2387–2395 (2011).

    Article  PubMed  Google Scholar 

  175. Adam, C. R., Shrier, E., Ding, Y., Glazman, S. & Bodis-Wollner, I. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J. Neuroophthalmol. 33, 137–142 (2013).

    Article  PubMed  Google Scholar 

  176. Uc, E. Y. et al. Visual dysfunction in Parkinson disease without dementia. Neurology 65, 1907–1913 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Karson, C. N., LeWitt, P. A., Calne, D. B. & Wyatt, R. J. Blink rates in Parkinsonism. Ann. Neurol. 12, 580–583 (1982).

    Article  CAS  PubMed  Google Scholar 

  178. Agostino, R. et al. Voluntary, spontaneous, and reflex blinking in Parkinson's disease. Mov. Disord. 23, 669–675 (2008).

    Article  PubMed  Google Scholar 

  179. Reddy, V. C., Patel, S. V., Hodge, D. O. & Leavitt, J. A. Corneal sensitivity, blink rate, and corneal nerve density in progressive supranuclear palsy and Parkinson disease. Cornea 32, 631–635 (2013).

    Article  PubMed  Google Scholar 

  180. Sadun, A. A., La Morgia, C. & Carelli, V. Mitochondrial optic neuropathies: our travels from bench to bedside and back again. Clin. Experiment. Ophthalmol. 41, 702–712 (2013).

    PubMed  Google Scholar 

  181. Debrosse, S. & Parikh, S. Neurologic disorders due to mitochondrial DNA mutations. Semin. Pediatr. Neurol. 19, 194–202 (2012).

    Article  PubMed  Google Scholar 

  182. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. Sitarz, K. S., Chinnery, P. F. & Yu-Wai-Man, P. Disorders of the optic nerve in mitochondrial cytopathies: new ideas on pathogenesis and therapeutic targets. Curr. Neurol. Neurosci. Rep. 12, 308–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Carelli, V., Ross-Cisneros, F. N. & Sadun, A. A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 23, 53–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Sadun, A. A., Win, P. H., Ross-Cisneros, F. N., Walker, S. O. & Carelli, V. Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans. Am. Ophthalmol. Soc. 98, 223–232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bristow, E. A., Griffiths, P. G., Andrews, R. M., Johnson, M. A. & Turnbull, D. M. The distribution of mitochondrial activity in relation to optic nerve structure. Arch. Ophthalmol. 120, 791–796 (2002).

    Article  PubMed  Google Scholar 

  187. Savini, G. et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber's hereditary optic neuropathy mutations. Ophthalmology 112, 127–131 (2005).

    Article  PubMed  Google Scholar 

  188. Liu, J. & Wang, L.-N. Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone. CNS Drugs 28, 63–68 (2014).

    Article  PubMed  CAS  Google Scholar 

  189. Hall, A., Burke, N., Dongworth, R. K. & Hausenloy, D. J. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br. J. Pharmacol. 171, 1890–1906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yue, W. et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. MacLaren, R. E. et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383, 1129–1137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maresca, A., la Morgia, C., Caporali, L., Valentino, M. L. & Carelli, V. The optic nerve: a “mito-window” on mitochondrial neurodegeneration. Mol. Cell. Neurosci. 55, 62–76 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Christova, P., Anderson, J. H. & Gomez, C. M. Impaired eye movements in presymptomatic spinocerebellar ataxia type 6. Arch. Neurol. 65, 530–536 (2008).

    Article  PubMed  Google Scholar 

  194. Tabrizi, S. J. et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 31–42 (2011).

    Article  PubMed  Google Scholar 

  195. Machuca-Tzili, L., Brook, D. & Hilton-Jones, D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve 32, 1–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Barboni, P. et al. Retinal nerve fiber layer thickness in dominant optic atrophy: Measurements by optical coherence tomography and correlation with age. Ophthalmology 118, 2076–2080 (2011).

    Article  PubMed  Google Scholar 

  197. Barboni, P. et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology 112, 120–126 (2005).

    Article  PubMed  Google Scholar 

  198. Carelli, V. et al. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim. Biophys. Acta 1787, 518–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Yu-Wai-Man, P., Griffiths, P. G., Hudson, G. & Chinnery, P. F. Inherited mitochondrial optic neuropathies. J. Med. Genet. 46, 145–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Moraes, C. T. et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns–Sayre syndrome. N. Engl. J. Med. 320, 1293–1299 (1989).

    Article  CAS  PubMed  Google Scholar 

  201. Grady, J. P. et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137, 323–334 (2014).

    Article  PubMed  Google Scholar 

  202. Kearns, T. P. & Sayre, G. P. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch. Ophthalmol. 60, 280–289 (1958).

    Article  CAS  PubMed  Google Scholar 

  203. Rahman, S. et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann. Neurol. 39, 343–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  204. Huoponen, K. Leber hereditary optic neuropathy: clinical and molecular genetic findings. Neurogenetics 3, 119–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  205. Finsterer, J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol. Scand. 114, 217–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Tsuji, M. et al. Leigh syndrome associated with West syndrome. Brain Dev. 25, 245–250 (2003).

    Article  PubMed  Google Scholar 

  207. Morris, A. A. et al. Deficiency of respiratory chain complex I is a common cause of Leigh disease. Ann. Neurol. 40, 25–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  208. Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sembrano, E., Barthlen, G. M., Wallace, S. & Lamm, C. Polysomnographic findings in a patient with the mitochondrial encephalomyopathy NARP. Neurology 49, 1714–1717 (1997).

    Article  CAS  PubMed  Google Scholar 

  210. Hirano, M. & DiMauro, S. Clinical features of mitochondrial myopathies and encephalomyopathies. In Handbook of Muscle Disease (ed. Lane, R. J.) 479–504 (Marcel Dekker, Inc., 1996).

    Google Scholar 

  211. Hirano, M. & Pavlakis, S. G. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J. Child Neurol. 9, 4–13 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.M.K. researched the data for the article and wrote the text. All authors made substantial contributions to discussions of the content and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Helen V. Danesh-Meyer.

Ethics declarations

Competing interests

H.V.D.-M. has received research grants from Alcon Laboratories, Allergan Limited and the Eye Institute (Auckland, New Zealand). H.M.K and R.H.R. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kersten, H., Roxburgh, R. & Danesh-Meyer, H. Ophthalmic manifestations of inherited neurodegenerative disorders. Nat Rev Neurol 10, 349–362 (2014). https://doi.org/10.1038/nrneurol.2014.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing