Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging renal cell carcinoma with ultrasonography, CT and MRI

Abstract

The increased use of abdominal imaging techniques for a variety of indications has contributed to more-frequent detection of renal cell carcinoma (RCC). Ultrasonography has been used to characterize the solid versus cystic nature of renal masses. This modality has limitations, however, in further characterization of solid tumors and in staging of malignancy, although contrast-enhanced ultrasonography has shown promise. Cross-sectional imaging with multiplanar reconstruction capability via CT or MRI has become the standard-bearer in the diagnosis, staging and surveillance of renal cancers. The use of specific protocols and the exploitation of different imaging characteristics of RCC subtypes, including variations in contrast agent timing, MRI weighting and digital subtraction, have contributed to this diagnostic capability. Cystic renal masses are a special case, evaluation of which can require multiple imaging modalities. Rigorous evaluation of these lesions can provide information that is crucial to prediction of the likelihood of malignancy. Such imaging is not without risk, however, as radiation from frequent CT imaging has been implicated in the development of secondary malignancies, and contrast agents for CT and MRI can pose risks, particularly in patients with compromised renal function.

Key Points

  • CT is considered the gold standard for the evaluation of a suspicious renal mass; protocols must involve pre-contrast images as well as images obtained at multiple time points after contrast administration

  • CT is also an excellent staging modality that can assess lymphadenopathy, metastatic disease, the risk of adrenal gland involvement and response to systemic therapy

  • Ultrasonography is rarely used alone in the evaluation of a solid renal mass; contrast-enhanced ultrasonography is not yet approved in the USA but might show vascularity of lesions without radiation

  • MRI is an excellent modality that does not employ ionizing radiation, and can aid in the differentiation of benign and malignant lesions; it is also helpful in the evaluation of a vascular tumor thrombus

  • Cystic renal masses require special attention and classification to determine the likelihood of malignancy; MRI is emerging as a useful tool in certain situations to differentiate benign from malignant cysts

  • Assessing response to minimally invasive therapy and systemic treatment with agents such as tyrosine kinase inhibitors is important, with CT currently the most utilized modality, although MRI is a reasonable alternative

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multidetector CT.
Figure 2: The partial volume effect on CT.
Figure 3: CT to differentiate tumor subtypes.
Figure 4: A large clear cell renal cell carcinoma (RCC) ideal for staging by CT.
Figure 5: MRI, multidetector CT and ultrasonography of the same kidney lesion.
Figure 6: Effects of tyrosine kinase inhibitor (TKI) treatment on a clear cell renal cell carcinoma (RCC).
Figure 7: A comparison of the arterial phase of axial CT images at the same level in a Fuhrman grade II renal cell carcinoma (RCC) treated by radiofrequency ablation.

Similar content being viewed by others

References

  1. Horner, M. J. et al. SEER Cancer Statistics Review, 1975–2006, National Cancer Institute. Bethesda, MD, [online] (2009).

  2. Gill, I. S., Aron, M., Gervais, D. A. & Jewett, M. A. Clinical practice. Small renal mass. N. Engl. J. Med. 362, 624–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Volpe, A. et al. The natural history of incidentally detected small renal masses. Cancer 100, 738–745 (2004).

    Article  PubMed  Google Scholar 

  4. Cooperberg, M. R. et al. Decreasing size at diagnosis of stage 1 renal cell carcinoma: analysis from the National Cancer Data Base, 1993 to 2004. J. Urol. 179, 2131–2135 (2008).

    Article  PubMed  Google Scholar 

  5. Frank, I. et al. Solid renal tumors: an analysis of pathological features related to tumor size. J. Urol. 170, 2217–2220 (2003).

    Article  PubMed  Google Scholar 

  6. Bach, A. M. & Zhang, J. Contemporary radiologic imaging of renal cortical tumors. Urol. Clin. North Am. 35, 593–604 (2008).

    Article  PubMed  Google Scholar 

  7. Lane, B. R. et al. Renal mass biopsy—a renaissance? J. Urol. 179, 20–27 (2008).

    Article  PubMed  Google Scholar 

  8. Silver, D. A., Morash, C., Brenner, P., Campbell, S. & Russo, P. Pathologic findings at the time of nephrectomy for renal mass. Ann. Surg. Oncol. 4, 570–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Schlomer, B., Figenshau, R. S., Yan, Y. & Bhayani, S. B. How does the radiographic size of a renal mass compare with the pathologic size? Urology 68, 292–295 (2006).

    Article  PubMed  Google Scholar 

  10. Thompson, R. H. et al. Tumor size is associated with malignant potential in renal cell carcinoma cases. J. Urol. 181, 2033–2036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    Article  PubMed  Google Scholar 

  12. Ljungberg, B. et al. Guidelines on Renal Cell Carcinoma (European Association of Urology, 2009).

    Google Scholar 

  13. Bluth, E. I. et al. Indeterminate renal masses. American College of Radiology. ACR Appropriateness Criteria. Radiology 215 (Suppl.), 747–752 (2000).

    PubMed  Google Scholar 

  14. Choyke, P. L. et al. Renal cell carcinoma staging. American College of Radiology. ACR Appropriateness Criteria. Radiology 215 (Suppl.), 721–725 (2000).

    PubMed  Google Scholar 

  15. Kopka, L. et al. Dual-phase helical CT of the kidney: value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma. AJR Am. J. Roentgenol. 169, 1573–1578 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Yuh, B. I. & Cohan, R. H. Different phases of renal enhancement: role in detecting and characterizing renal masses during helical CT. AJR Am. J. Roentgenol. 173, 747–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ng, C. S. et al. Renal cell carcinoma: diagnosis, staging, and surveillance. AJR Am. J. Roentgenol. 191, 1220–1232 (2008).

    Article  PubMed  Google Scholar 

  18. Silverman, S. G., Leyendecker, J. R. & Amis, E. S. Jr. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250, 309–323 (2009).

    Article  PubMed  Google Scholar 

  19. Bosniak, M. A. The current radiological approach to renal cysts. Radiology 158, 1–10 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Israel, G. M. & Bosniak, M. A. How I do it: evaluating renal masses. Radiology 236, 441–450 (2005).

    Article  PubMed  Google Scholar 

  21. Siegel, C. L., Fisher, A. J. & Bennett, H. F. Interobserver variability in determining enhancement of renal masses on helical CT. AJR Am. J. Roentgenol. 172, 1207–1212 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Israel, G. M. & Bosniak, M. A. Pitfalls in renal mass evaluation and how to avoid them. Radiographics 28, 1325–1338 (2008).

    Article  PubMed  Google Scholar 

  23. Wang, Z. J. et al. Renal cyst pseudoenhancement at multidetector CT: what are the effects of number of detectors and peak tube voltage? Radiology 248, 910–916 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bosniak, M. A. Angiomyolipoma (hamartoma) of the kidney: a preoperative diagnosis is possible in virtually every case. Urol. Radiol. 3, 135–142 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Simpfendorfer, C. et al. Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels aid diagnosis? AJR Am. J. Roentgenol. 192, 438–443 (2009).

    Article  PubMed  Google Scholar 

  26. Kim, J. K., Park, S. Y., Shon, J. H. & Cho, K. S. Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Radiology 230, 677–684 (2004).

    Article  PubMed  Google Scholar 

  27. Choudhary, S., Rajesh, A., Mayer, N. J., Mulcahy, K. A. & Haroon, A. Renal oncocytoma: CT features cannot reliably distinguish oncocytoma from other renal neoplasms. Clin. Radiol. 64, 517–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Prasad, S. R., Surabhi, V. R., Menias, C. O., Raut, A. A. & Chintapalli, K. N. Benign renal neoplasms in adults: cross-sectional imaging findings. AJR Am. J. Roentgenol. 190, 158–164 (2008).

    Article  PubMed  Google Scholar 

  29. Kim, J. I., Cho, J. Y., Moon, K. C., Lee, H. J. & Kim, S. H. Segmental enhancement inversion at biphasic multidetector CT: characteristic finding of small renal oncocytoma. Radiology 252, 441–448 (2009).

    Article  PubMed  Google Scholar 

  30. Bastide, C., Rambeaud, J. J., Bach, A. M. & Russo, P. Metanephric adenoma of the kidney: clinical and radiological study of nine cases. BJU Int. 103, 1544–1548 (2009).

    Article  PubMed  Google Scholar 

  31. Sheir, K. Z., El-Azab, M., Mosbah, A., El-Baz, M. & Shaaban, A. A. Differentiation of renal cell carcinoma subtypes by multislice computerized tomography. J. Urol. 174, 451–455 (2005).

    Article  PubMed  Google Scholar 

  32. Zhang, J. et al. Solid renal cortical tumors: differentiation with CT. Radiology 244, 494–504 (2007).

    Article  PubMed  Google Scholar 

  33. Johnson, C. D., Dunnick, N. R., Cohan, R. H. & Illescas, F. F. Renal adenocarcinoma: CT staging of 100 tumors. AJR Am. J. Roentgenol. 148, 59–63 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Reznek, R. H. CT/MRI in staging renal cell carcinoma. Cancer Imaging 4, S25–S32 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guzzo, T., Pierorazio, P., Schaeffer, E., Fishman, E. & Allaf, M. The accuracy of multidetector computerized tomography for evaluating tumor thrombus in patients with renal cell carcinoma. J. Urol. 181, 486–490 (2009).

    Article  PubMed  Google Scholar 

  36. Hallscheidt, P. et al. Preoperative staging of renal cell carcinoma with inferior vena cava thrombus using multidetector CT and MRI: prospective study with histopathological correlation. J. Comput. Assist. Tomogr. 29, 64–68 (2005).

    Article  PubMed  Google Scholar 

  37. Lawrentschuk, N., Gani, J., Riordan, R., Esler, S. & Bolton, D. M. Multidetector computed tomography vs magnetic resonance imaging for defining the upper limit of tumour thrombus in renal cell carcinoma: a study and review. BJU Int. 96, 291–295 (2005).

    Article  PubMed  Google Scholar 

  38. Robson, C. J., Churchill, B. M. & Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J. Urol. 101, 297–301 (1969).

    Article  CAS  PubMed  Google Scholar 

  39. Tsui, K. H. et al. Is adrenalectomy a necessary component of radical nephrectomy? UCLA experience with 511 radical nephrectomies. J. Urol. 163, 437–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. O'Malley, R. L., Godoy, G., Kanofsky, J. A. & Taneja, S. S. The necessity of adrenalectomy at the time of radical nephrectomy: a systematic review. J. Urol. 181, 2009–2017 (2009).

    Article  PubMed  Google Scholar 

  41. Studer, U. E. et al. Enlargement of regional lymph nodes in renal cell carcinoma is often not due to metastases. J. Urol. 144, 243–245 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Blom, J. H. et al. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur. Urol. 55, 28–34 (2009).

    Article  PubMed  Google Scholar 

  43. Fazel, R. et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N. Engl. J. Med. 361, 849–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hall, E. J. & Brenner, D. J. Cancer risks from diagnostic radiology. Br. J. Radiol. 81, 362–378 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Martin, D. R. et al. Nephrogenic systemic fibrosis versus contrast-induced nephropathy: risks and benefits of contrast-enhanced MR and CT in renally impaired patients. J. Magn. Reson. Imaging 30, 1350–1356 (2009).

    Article  PubMed  Google Scholar 

  46. Goldenberg, I. & Matetzky, S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172, 1461–1471 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Probert, J. L., Glew, D. & Gillatt, D. A. Magnetic resonance imaging in urology. BJU Int. 83, 201–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Tello, R. et al. MR imaging of renal masses interpreted on CT to be suspicious. AJR Am. J. Roentgenol. 174, 1017–1022 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Eilenberg, S., Brown, J., Lee, J., Heiken, J. & Mirowitz, S. Evaluation of renal masses with contrast-enhanced rapid acquisition spin echo MR imaging. Magn. Reson. Imaging 11, 7–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Silverman, S. G., Israel, G. M., Herts, B. R. & Richie, J. P. Management of the incidental renal mass. Radiology 249, 16–31 (2008).

    Article  PubMed  Google Scholar 

  51. Kim, S. et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 251, 796–807 (2009).

    Article  PubMed  Google Scholar 

  52. Ho, V., Allen, S., Hood, M. & Choyke, P. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology 224, 695–700 (2002).

    Article  PubMed  Google Scholar 

  53. Hecht, E. et al. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology 232, 373–378 (2004).

    Article  PubMed  Google Scholar 

  54. Kim, J. et al. Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239, 174–180 (2006).

    Article  PubMed  Google Scholar 

  55. Garin, J. et al. CT and MRI in fat-containing papillary renal cell carcinoma. Br. J. Radiol. 80, e193–e195 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Roy, C. et al. Renal cell carcinoma with a fatty component mimicking angiomyolipoma on CT. Br. J. Radiol. 71, 977–979 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Prasad, S., Surabhi, V., Menias, C., Raut, A. & Chintapalli, K. Benign renal neoplasms in adults: cross-sectional imaging findings. AJR Am. J. Roentgenol. 190, 158–164 (2008).

    Article  PubMed  Google Scholar 

  58. Prince, M. R., Zhang, H. L., Roditi, G. H., Leiner, T. & Kucharczyk, W. Risk factors for NSF: a literature review. J. Magn. Reson. Imaging 30, 1298–1308 (2009).

    Article  PubMed  Google Scholar 

  59. Agarwal, R. et al. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol. Dial. Transplant. 24, 856–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Mayr, M., Burkhalter, F. & Bongartz, G. Nephrogenic systemic fibrosis: clinical spectrum of disease. J. Magn. Reson. Imaging 30, 1289–1297 (2009).

    Article  PubMed  Google Scholar 

  61. Sun, M. et al. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes--correlation with pathologic findings. Radiology 250, 793–802 (2009).

    Article  PubMed  Google Scholar 

  62. Oliva, M. R. et al. Renal cell carcinoma: t1 and t2 signal intensity characteristics of papillary and clear cell types correlated with pathology. AJR Am. J. Roentgenol. 192, 1524–1530 (2009).

    Article  PubMed  Google Scholar 

  63. Shinmoto, H. et al. Small renal cell carcinoma: MRI with pathologic correlation. J. Magn. Reson. Imaging 8, 690–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Pedrosa, I. et al. MR classification of renal masses with pathologic correlation. Eur. Radiol. 18, 365–375 (2008).

    Article  PubMed  Google Scholar 

  65. Roy, C. S. et al. Significance of the pseudocapsule on MRI of renal neoplasms and its potential application for local staging: a retrospective study. AJR Am. J. Roentgenol. 184, 113–120 (2005).

    Article  PubMed  Google Scholar 

  66. Oto, A., Herts, B. R., Remer, E. M. & Novick, A. C. Inferior vena cava tumor thrombus in renal cell carcinoma: staging by MR imaging and impact on surgical treatment. AJR Am. J. Roentgenol. 171, 1619–1624 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Kallman, D. A. et al. Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J. Comput. Assist. Tomogr. 16, 240–247 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Laissy, J. et al. Renal carcinoma: diagnosis of venous invasion with Gd-enhanced MR venography. Eur. Radiol. 10, 1138–1143 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Aslam Sohaib, S. et al. Assessment of tumor invasion of the vena caval wall in renal cell carcinoma cases by magnetic resonance imaging. J. Urol. 167, 1271–1275 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Jamis-Dow, C. A. et al. Small (< or = 3-cm) renal masses: detection with CT versus US and pathologic correlation. Radiology 198, 785–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Bos, S. D. & Mensink, H. J. Can duplex Doppler ultrasound replace computerized tomography in staging patients with renal cell carcinoma? Scand. J. Urol. Nephrol. 32, 87–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Frohmüller, H. G., Grups, J. W. & Heller, V. Comparative value of ultrasonography, computerized tomography, angiography and excretory urography in the staging of renal cell carcinoma. J. Urol. 138, 482–484 (1987).

    Article  PubMed  Google Scholar 

  73. Setola, S. V., Catalano, O., Sandomenico, F. & Siani, A. Contrast-enhanced sonography of the kidney. Abdom. Imaging 32, 21–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Wilson, S. R., Greenbaum, L. D. & Goldberg, B. B. Contrast-enhanced ultrasound: what is the evidence and what are the obstacles? AJR Am. J. Roentgenol. 193, 55–60 (2009).

    Article  PubMed  Google Scholar 

  75. Tamai, H. et al. Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J. Ultrasound Med. 24, 1635–1640 (2005).

    Article  PubMed  Google Scholar 

  76. Fan, L., Lianfang, D., Jinfang, X., Yijin, S. & Ying, W. Diagnostic efficacy of contrast-enhanced ultrasonography in solid renal parenchymal lesions with maximum diameters of 5 cm. J. Ultrasound Med. 27, 875–885 (2008).

    Article  PubMed  Google Scholar 

  77. Park, B. K. et al. Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US. Eur. J. Radiol. 61, 310–314 (2007).

    Article  PubMed  Google Scholar 

  78. Piscaglia, F. & Bolondi, L. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med. Biol. 32, 1369–1375 (2006).

    Article  PubMed  Google Scholar 

  79. ter Haar, G. Safety and bio-effects of ultrasound contrast agents. Med. Biol. Eng. Comput. 47, 893–900 (2009).

    Article  PubMed  Google Scholar 

  80. Carrim, Z. I. & Murchison, J. T. The prevalence of simple renal and hepatic cysts detected by spiral computed tomography. Clin. Radiol. 58, 626–629 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Israel, G. M. & Bosniak, M. A. An update of the Bosniak renal cyst classification system. Urology 66, 484–488 (2005).

    Article  PubMed  Google Scholar 

  82. Song, C. et al. Differential diagnosis of complex cystic renal mass using multiphase computerized tomography. J. Urol. 181, 2446–2450 (2009).

    Article  PubMed  Google Scholar 

  83. Bach, A. & Zhang, J. Contemporary radiologic imaging of renal cortical tumors. Urol. Clin. North Am. 35, 593–604 (2008).

    Article  PubMed  Google Scholar 

  84. Israel, G. & Bosniak, M. MR imaging of cystic renal masses. Magn. Reson. Imaging Clin. N. Am. 12, 403–412 (2004).

    Article  PubMed  Google Scholar 

  85. Israel, G., Hindman, N. & Bosniak, M. Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system. Radiology 231, 365–371 (2004).

    Article  PubMed  Google Scholar 

  86. Sandrasegaran, K. et al. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am. J. Roentgenol. 194, 438–445 (2010).

    Article  PubMed  Google Scholar 

  87. Crispen, P. L. et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer 115, 2844–2852 (2009).

    Article  PubMed  Google Scholar 

  88. Sowery, R. D. & Siemens, D. R. Growth characteristics of renal cortical tumors in patients managed by watchful waiting. Can. J. Urol. 11, 2407–2410 (2004).

    PubMed  Google Scholar 

  89. The American College of Radiology ACR Appropriateness Criteria®. Clinical Condition: Follow up of Renal Cell Carcinoma [online], (2009).

  90. Gervais, D. A., McGovern, F. J., Arellano, R. S., McDougal, W. S. & Mueller, P. R. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am. J. Roentgenol. 185, 64–71 (2005).

    Article  PubMed  Google Scholar 

  91. Wile, G. E., Leyendecker, J. R., Krehbiel, K. A., Dyer, R. B. & Zagoria, R. J. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 27, 325–339 (2007).

    Article  PubMed  Google Scholar 

  92. Davenport, M. S. et al. MRI and CT characteristics of successfully ablated renal masses: imaging surveillance after radiofrequency ablation. AJR Am. J. Roentgenol. 192, 1571–1578 (2009).

    Article  PubMed  Google Scholar 

  93. Kawamoto, S., Permpongkosol, S., Bluemke, D. A., Fishman, E. K. & Solomon, S. B. Sequential changes after radiofrequency ablation and cryoablation of renal neoplasms: role of CT and MR imaging. Radiographics 27, 343–355 (2007).

    Article  PubMed  Google Scholar 

  94. Matsumoto, E. D. et al. The radiographic evolution of radio frequency ablated renal tumors. J. Urol. 172, 45–48 (2004).

    Article  PubMed  Google Scholar 

  95. Bensalah, K., Zeltser, I., Tuncel, A., Cadeddu, J. & Lotan, Y. Evaluation of costs and morbidity associated with laparoscopic radiofrequency ablation and laparoscopic partial nephrectomy for treating small renal tumours. BJU Int. 101, 467–471 (2008).

    PubMed  Google Scholar 

  96. Clark, T. W. et al. Reporting standards for percutaneous thermal ablation of renal cell carcinoma. J. Vasc. Interv. Radiol. 20, S409–S416 (2009).

    Article  PubMed  Google Scholar 

  97. Kassouf, W. et al. Follow-up guidelines after radical or partial nephrectomy for localized and locally advanced renal cell carcinoma. Can. Urol. Assoc. J. 3, 73–76 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology—Kidney Cancer [online], (2009).

  99. Ljungberg, B. et al. Renal cell carcinoma guideline. Eur. Urol. 51, 1502–1510 (2007).

    Article  PubMed  Google Scholar 

  100. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Maksimovic, O. et al. Evaluation of response in malignant tumors treated with the multitargeted tyrosine kinase inhibitor sorafenib: a multitechnique imaging assessment. AJR Am. J. Roentgenol. 194, 5–14 (2010).

    Article  PubMed  Google Scholar 

  105. Smith, A. D., Lieber, M. L. & Shah, S. N. Assessing tumor response and detecting recurrence in metastatic renal cell carcinoma on targeted therapy: importance of size and attenuation on contrast-enhanced CT. AJR Am. J. Roentgenol. 194, 157–165 (2010).

    Article  PubMed  Google Scholar 

  106. US National Institutes of Health. A Study of Neoadjuvant Sutent for Patients With Renal Cell Carcinoma—University of Toronto. http://clinicaltrials.gov/ct2/show/NCT00480935 (2010).

  107. O'Connor, J. P., Jackson, A., Parker, G. J. & Jayson, G. C. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lamuraglia, M. et al. Clinical relevance of contrast-enhanced ultrasound in monitoring anti-angiogenic therapy of cancer: current status and perspectives. Crit. Rev. Oncol. Hematol. 73, 202–212 (2010).

    Article  PubMed  Google Scholar 

  109. Lamuraglia, M. et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur. J. Cancer 42, 2472–2479 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Willmann, J. K. et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246, 508–518 (2008).

    Article  PubMed  Google Scholar 

  111. Lawrentschuk, N., Davis, I. D., Bolton, D. M. & Scott, A. M. Functional imaging of renal cell carcinoma. Nat. Rev. Urol. doi:10.1038/nrurol.2010.40.

    Article  PubMed  Google Scholar 

  112. Warren, K. S. & McFarlane, J. The Bosniak classification of renal cystic masses. BJU Int. 95, 939–942 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leveridge, M., Bostrom, P., Koulouris, G. et al. Imaging renal cell carcinoma with ultrasonography, CT and MRI. Nat Rev Urol 7, 311–325 (2010). https://doi.org/10.1038/nrurol.2010.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing