Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current understanding of hypospadias: relevance of animal models

This article has been updated

Key Points

  • Hypospadias occurs in approximately 1:200–1:300 newborn males, and is the second most common congenital abnormality in boys

  • For the overwhelming majority of patients with hypospadias the aetiology remains unknown

  • Relevant animal models of hypospadias are needed to improve our understanding of this congenital anomaly

  • Normal and hypospadic development of the mouse, rat and human penis and prepuce involves similar epithelial fusion events and disruption of urethra-associated erectile bodies, leading to similar penile and preputial defects

  • The ultimate goal of hypospadias research is to prevent or reduce the incidence of hypospadias in humans by defining the underlying environmental causes and genetic susceptibilities

Abstract

Hypospadias is a congenital abnormality of the penile urethra with an incidence of approximately 1:200–1:300 male births, which has doubled over the past three decades. The aetiology of the overwhelming majority of hypospadias remains unknown but appears to be a combination of genetic susceptibility and prenatal exposure to endocrine disruptors. Reliable animal models of hypospadias are required for better understanding of the mechanisms of normal penile urethral formation and hence hypospadias. Mice and/or rats are generally used for experimental modelling of hypospadias, however these do not fully reflect the human condition. To use these models successfully, researchers must understand the similarities and differences between mouse, rat and human penile anatomy as well as the normal morphogenetic mechanisms of penile development in these species. Despite some important differences, numerous features of animal and human hypospadias are shared: the prevalence of distal penile malformations; disruption of the urethral meatus; disruption of urethra-associated erectile bodies; and a common mechanism of impaired epithelial fusion events. Rat and mouse models of hypospadias are crucial to our understanding of hypospadias to ultimately reduce its incidence through better preventive strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of human hypospadias.
Figure 2: Penile anatomy and development.
Figure 3: Mid-sagittal haematoxylin–eosin stained sections of the adult mouse penis.
Figure 4: Gross anatomy and histology of the mouse and rat penis.
Figure 5: Scanning electron micrographs of penises from mice with postnatal diethylstilbestrol exposure.
Figure 6: Human penile urethral development.
Figure 7: Transverse sections through the genital tubercles of 18-day embryonic mice.
Figure 8: Sections through an 18-day embryonic mouse genital tubercle.
Figure 9: Development of the distal adult mouse urethra.

Similar content being viewed by others

Change history

  • 29 April 2015

    In the version of this article initially published online, the legend of Figure 5h contained a labelling error (f instead of h). The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Baskin, L. S. Hypospadias and urethral development. J. Urol. 163, 951–956 (2000).

    Article  CAS  Google Scholar 

  2. Paulozzi, L. J., Erickson, J. D. & Jackson, R. J. Hypospadias trends in two US surveillance systems. Pediatrics 100, 831–834 (1997).

    Article  CAS  Google Scholar 

  3. Lee, O. T., Durbin-Johnson, B. & Kurzrock, E. A. Predictors of secondary surgery after hypospadias repair: a population based analysis of 5,000 patients. J. Urol. 190, 251–255 (2013).

    Article  Google Scholar 

  4. Kalfa, N., Philibert, P., Baskin, L. S. & Sultan, C. Hypospadias: interactions between environment and genetics. Mol. Cell. Endocrinol. 335, 89–95 (2011).

    Article  CAS  Google Scholar 

  5. Yiee, J. H. & Baskin, L. S. Environmental factors in genitourinary development. J. Urol. 184, 34–41 (2010).

    Article  CAS  Google Scholar 

  6. Willingham, E. & Baskin, L. S. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nat. Clin. Pract. Urol. 4, 270–279 (2007).

    Article  CAS  Google Scholar 

  7. Baskin, L. S. Can we prevent hypospadias? Fertil. Steril. 89, e39 (2008).

    Article  Google Scholar 

  8. Buckley, J., Willingham, E., Agras, K. & Baskin, L. S. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice. Environ. Health 5, 4 (2006).

    Article  Google Scholar 

  9. Imperato-McGinley, J. 5α Reductase deficiency in man. Prog. Cancer Res. Therap. 31, 491–496 (1984).

    Google Scholar 

  10. Kim, K. S. et al. Induction of hypospadias in a murine model by maternal exposure to synthetic estrogens. Environ. Res. 94, 267–275 (2004).

    Article  CAS  Google Scholar 

  11. Kojima, Y. et al. Spermatogenesis, fertility and sexual behavior in a hypospadiac mouse model. J. Urol. 167, 1532–1537 (2002).

    Article  Google Scholar 

  12. Willingham, E. et al. Steroid receptors and mammalian penile development: an unexpected role for progesterone receptor? J. Urol. 176, 728–733 (2006).

    Article  CAS  Google Scholar 

  13. Willingham, E., Agras, K., Vilela, M. & Baskin, L. S. Loratadine exerts estrogen-like effects and disrupts penile development in the mouse. J. Urol. 175, 723–726 (2006).

    Article  CAS  Google Scholar 

  14. Carmichael, S. L. et al. Maternal progestin intake and risk of hypospadias. Arch. Pediatr. Adolesc. Med. 159, 957–962 (2005).

    Article  Google Scholar 

  15. Ormond, G. et al. Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: case-control study. Environ. Health Perspect. 117, 303–307 (2009).

    Article  Google Scholar 

  16. Swan, S. H. et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 113, 1056–1061 (2005).

    Article  CAS  Google Scholar 

  17. Ostby, J. et al. The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol. Ind. Health 15, 80–93 (1999).

    Article  CAS  Google Scholar 

  18. Rider, C. V. et al. Cumulative effects of in utero administration of mixtures of “antiandrogens” on male rat reproductive development. Toxicologic Pathol. 37, 100–113 (2009).

    Article  CAS  Google Scholar 

  19. Baskin, L. S., Erol, A., Li, Y. W. & Cunha, G. R. Anatomical studies of hypospadias. J. Urol. 160, 1108–1115 (1998).

    Article  CAS  Google Scholar 

  20. Baskin, L. S. & Ebbers, M. B. Hypospadias: anatomy, etiology, and technique. J. Pediatr. Surg. 41, 463–472 (2006).

    Article  Google Scholar 

  21. Clemente, C. D. (ed.) Gray's Anatomy (Lea & Febiger, 1985).

    Google Scholar 

  22. Rodriguez, E., Jr. et al. New insights on the morphology of adult mouse penis. Biol. Reprod. 85, 1216–1221 (2011).

    Article  CAS  Google Scholar 

  23. Blaschko, S. D. et al. Analysis of the effect of estrogen/androgen perturbation on penile development in transgenic and diethylstilbestrol-treated mice. Anat. Rec. (Hoboken) 296, 1127–1141 (2013).

    Article  CAS  Google Scholar 

  24. Beresford, W. A. & Burkart, S. The penile bone and anterior process of the rat in scanning electron microscopy. J. Anat. 124, 589–597 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Izumi, K., Yamaoka, I. & Murakami, R. Ultrastructure of the developing fibrocartilage of the os penis of rat. J. Morphol. 243, 187–191 (2000).

    Article  CAS  Google Scholar 

  26. Mahawong, P. et al. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains. Differentiation 88, 51–69 (2014).

    Article  CAS  Google Scholar 

  27. Mahawong, P. et al. Comparative effects of neonatal diethylstilbestrol on external genitalia development in adult males of two mouse strains with differential estrogen sensitivity. Differentiation 88, 70–83 (2014).

    Article  CAS  Google Scholar 

  28. Goyal, H. O., Braden, T. D., Williams, C. S. & Williams, J. W. Role of estrogen in induction of penile dysmorphogenesis: a review. Reproduction 134, 199–208 (2007).

    Article  CAS  Google Scholar 

  29. Moore, K. L. & Persaud, T. V. N. The Developing Human (Saunders, 2003).

    Google Scholar 

  30. Yamada, G., Satoh, Y., Baskin, L. S. & Cunha, G. R. Cellular and molecular mechanisms of development of the external genitalia. Differentiation 71, 445–460 (2003).

    Article  Google Scholar 

  31. Li, Y. et al. Canalization of the urethral plate precedes fusion of the urethral folds during male penile urethral development: the double zipper hypothesis. J. Urology http://dx.doi.org/10.1016/j.juro.2014.09.108.

  32. Seifert, A. W., Harfe, B. D. & Cohn, M. J. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum. Dev. Biol. 318, 143–52 (2008).

    Article  CAS  Google Scholar 

  33. Hynes, P. J. & Fraher, J. P. The development of the male genitourinary system: II. The origin and formation of the urethral plate. Br. J. Plast. Surg. 57, 112–121 (2004).

    Article  CAS  Google Scholar 

  34. Hynes, P. J. & Fraher, J. P. The development of the male genitourinary system: III. The formation of the spongiose and glandar urethra. Br. J. Plast. Surg. 57, 203–14 (2004).

    Article  CAS  Google Scholar 

  35. Baskin, L. S. et al. Urethral seam formation and hypospadias. Cell Tissue Res. 305, 379–387 (2001).

    Article  CAS  Google Scholar 

  36. Yucel, S., Cavalcanti, A. G., Desouza, A., Wang, Z. & Baskin, L. S. The effect of oestrogen and testosterone on the urethral seam of the developing male mouse genital tubercle. BJU Int. 92, 1016–1021 (2003).

    Article  CAS  Google Scholar 

  37. Schlomer, B. J. et al. Sexual differentiation in the male and female mouse from days 0 to 21: a detailed and novel morphometric description. J. Urol. 190, 1610–1617 (2013).

    Article  Google Scholar 

  38. Rodriguez, E. Jr et al. Specific morphogenetic events in mouse external genitalia sex differentiation are responsive/dependent upon androgens and/or estrogens. Differentiation 84, 269–279 (2012).

    Article  CAS  Google Scholar 

  39. Perriton, C. L., Powles, N., Chiang, C., Maconochie, M. K. & Cohn, M. J. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev. Biol. 247, 26–46 (2002).

    Article  CAS  Google Scholar 

  40. Petiot, A., Perriton, C. L., Dickson, C. & Cohn, M. J. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development 132, 2441–2450 (2005).

    Article  CAS  Google Scholar 

  41. Kluth, D., Fiegel, H. C., Geyer, C. & Metzger, R. Embryology of the distal urethra and external genitals. Semin. Pediatr. Surg. 20, 176–187 (2011).

    Article  Google Scholar 

  42. Li, X. et al. Altered structure and function of reproductive organs in transgenic male mice overexpressing human aromatase. Endocrinology 142, 2435–2442 (2001).

    Article  CAS  Google Scholar 

  43. Foster, P. M. & Harris, M. W. Changes in androgen-mediated reproductive development in male rat offspring following exposure to a single oral dose of flutamide at different gestational ages. Toxicol. Sci. 85, 1024–1032 (2005).

    Article  CAS  Google Scholar 

  44. Gray, L. E. et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum. Reprod. Update 7, 248–264 (2001).

    Article  CAS  Google Scholar 

  45. Christiansen, S. et al. Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. Int. J. Androl. 31, 241–248 (2008).

    Article  CAS  Google Scholar 

  46. Christiansen, S. et al. Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ. Health Perspect. 117, 1839–1846 (2009).

    Article  CAS  Google Scholar 

  47. Bowman, C. J., Barlow, N. J., Turner, K. J., Wallace, D. G. & Foster, P. M. Effects of in utero exposure to finasteride on androgen-dependent reproductive development in the male rat. Toxicol. Sci. 74, 393–406 (2003).

    Article  CAS  Google Scholar 

  48. Clark, R. L. et al. Critical developmental periods for effects on male rat genitalia induced by finasteride, a 5 α-reductase inhibitor. Toxicol. Appl. Pharmacol. 119, 34–40 (1993).

    Article  CAS  Google Scholar 

  49. Fisher, J. S., Macpherson, S., Marchetti, N. & Sharpe, R. M. Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum. Reprod. 18, 1383–1394 (2003).

    Article  CAS  Google Scholar 

  50. Foster, P. M. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int. J. Androl. 29, 140–147 (2006).

    Article  CAS  Google Scholar 

  51. Klinefelter, G. R. et al. Novel molecular targets associated with testicular dysgenesis induced by gestational exposure to diethylhexyl phthalate in the rat: a role for estradiol. Reproduction 144, 747–761 (2012).

    Article  CAS  Google Scholar 

  52. Iguchi, T., Uesugi, Y., Takasugi, N. & Petrow, V. Quantitative analysis of the development of genital organs from the urogenital sinus of the fetal male mouse treated prenatally with a 5 α-reductase inhibitor. J. Endocrinol. 128, 395–401 (1991).

    Article  CAS  Google Scholar 

  53. Silversides, D. W., Price, C. A. & Cooke, G. M. Effects of short-term exposure to hydroxyflutamide in utero on the development of the reproductive tract in male mice. Can. J. Physiol. Pharmacol. 73, 1582–1588 (1995).

    Article  CAS  Google Scholar 

  54. Dravis, C. et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290 (2004).

    Article  CAS  Google Scholar 

  55. Yong, W. et al. Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J. Biol. Chem. 282, 5026–5036 (2007).

    Article  CAS  Google Scholar 

  56. Yucel, S., Dravis, C., Garcia, N., Henkemeyer, M. & Baker, L. A. Hypospadias and anorectal malformations mediated by Eph/ephrin signaling. J. Pediatr. Urol. 3, 354–363 (2007).

    Article  Google Scholar 

  57. Jiang, J., Ma, L., Yuan, L., Wang, X. & Zhang, W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 232, 286–293 (2007).

    Article  CAS  Google Scholar 

  58. Sajjad, Y., Quenby, S., Nickson, P., Lewis-Jones, D. I. & Vince, G. Immunohistochemical localization of androgen receptors in the urogenital tracts of human embryos. Reproduction 128, 331–339 (2004).

    Article  CAS  Google Scholar 

  59. Silver, R. I. et al. Expression and regulation of steroid 5 α-reductase 2 in prostate disease. J. Urol. 152, 433–437 (1994).

    Article  CAS  Google Scholar 

  60. Klip, H. et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359, 1102–1107 (2002).

    Article  CAS  Google Scholar 

  61. Crescioli, C. et al. Expression of functional estrogen receptors in human fetal male external genitalia. J. Clin. Endocrinol. Metab. 88, 1815–1824 (2003).

    Article  CAS  Google Scholar 

  62. Berkovitz, G. D., Fujimoto, M., Brown, T. R., Brodie, A. M. & Migeon, C. J. Aromatase activity in cultured human genital skin fibroblasts. J. Clin. Endocrinol. Metab. 59, 665–671 (1984).

    Article  CAS  Google Scholar 

  63. Jesmin, S. et al. Aromatase is abundantly expressed by neonatal rat penis but downregulated in adulthood. J. Mol. Endocrinol. 33, 343–359 (2004).

    Article  CAS  Google Scholar 

  64. Yonezawa, T., Higashi, M., Yoshioka, K. & Mutoh, K. Distribution of aromatase and sex steroid receptors in the baculum during the rat life cycle: effects of estrogen during the early development of the baculum. Biol. Reprod. 85, 105–112 (2011).

    Article  CAS  Google Scholar 

  65. van der Zanden, L. F. et al. Common variants in DGKK are strongly associated with risk of hypospadias. Nat. Genet. 43, 48–50 (2011).

    Article  CAS  Google Scholar 

  66. Geller, F. et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat. Genet. 46, 957–963 (2014).

    Article  CAS  Google Scholar 

  67. Wang, Z. et al. Up-regulation of estrogen responsive genes in hypospadias: microarray analysis. J. Urol. 177, 1939–1946 (2007).

    Article  CAS  Google Scholar 

  68. Liu, B. et al. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr. Res. 58, 1280–1283 (2005).

    Article  CAS  Google Scholar 

  69. Qiao, L., Tasian, G. E., Zhang, H., Cunha, G. R. & Baskin, L. ZEB1 is estrogen responsive in vitro in human foreskin cells and is over expressed in penile skin in patients with severe hypospadias. J. Urol. 185, 1888–1893 (2011).

    Article  CAS  Google Scholar 

  70. Kalfa, N. et al. Genomic variants of ATF3 in patients with hypospadias. J. Urol. 180, 2183–2188 (2008).

    Article  CAS  Google Scholar 

  71. van der Zanden, L. F. et al. Aetiology of hypospadias: a systematic review of genes and environment. Hum. Reprod. Update 18, 260–283 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grant IOS-0920793 and NIH grant RO1 DK0581050.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and provided a substantial contribution to discussions of content. G.R.C., AS., G.R., J.H. and L.S.B. all contributed equally to writing the article, and to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Gerald R. Cunha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Anatomical and developmental characteristics of the human and mouse penis (DOCX 26 kb)

Supplementary Table 2

Findings from experimental studies of murine hypospadias (DOCX 26 kb)

Supplementary Table 3

Similarities and differences between human and mouse penis and urethral hypospadias (DOCX 26 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, G., Sinclair, A., Risbridger, G. et al. Current understanding of hypospadias: relevance of animal models. Nat Rev Urol 12, 271–280 (2015). https://doi.org/10.1038/nrurol.2015.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing