Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of an archetypal protein transport system in bacterial outer membranes

Abstract

Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TamA and the Omp85 superfamily of proteins.
Figure 2: TamA and TamB are membrane proteins interacting to form the TAM.
Figure 3: p1121 is an autotransporter and substrate of the TAM.
Figure 4: Bacteria lacking the TAM are ineffective in the assembly of autotransporters.
Figure 5: Overview of the Omp85 family machinery in Gram-negative bacteria.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gerlach, R.G. & Hensel, M. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297, 401–415 (2007).

    Article  CAS  Google Scholar 

  2. Durand, E. et al. Structural biology of bacterial secretion systems in gram-negative pathogens–potential for new drug targets. Infect. Disord. Drug Targets 9, 518–547 (2009).

    Article  CAS  Google Scholar 

  3. Holland, I.B. The extraordinary diversity of bacterial protein secretion mechanisms. Methods Mol. Biol. 619, 1–20 (2010).

    Article  CAS  Google Scholar 

  4. Bernstein, H.D. Are bacterial 'autotransporters' really transporters? Trends Microbiol. 15, 441–447 (2007).

    Article  CAS  Google Scholar 

  5. Ieva, R., Tian, P., Peterson, J.H. & Bernstein, H.D. Sequential and spatially restricted interactions of assembly factors with an autotransporter β-domain. Proc. Natl. Acad. Sci. USA 108, E383–E391 (2011).

    Article  CAS  Google Scholar 

  6. Dautin, N. & Bernstein, H.D. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61, 89–112 (2007).

    Article  CAS  Google Scholar 

  7. Gentle, I.E., Burri, L. & Lithgow, T. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58, 1216–1225 (2005).

    Article  CAS  Google Scholar 

  8. Jacob-Dubuisson, F., Villeret, V., Clantin, B., Delattre, A.S. & Saint, N. First structural insights into the TpsB/Omp85 superfamily. Biol. Chem. 390, 675–684 (2009).

    Article  CAS  Google Scholar 

  9. Tommassen, J. Biochemistry. Getting into and through the outer membrane. Science 317, 903–904 (2007).

    Article  CAS  Google Scholar 

  10. Bos, M.P., Robert, V. & Tommassen, J. Biogenesis of the gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61, 191–214 (2007).

    Article  CAS  Google Scholar 

  11. Gentle, I., Gabriel, K., Beech, P., Waller, R. & Lithgow, T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24 (2004).

    Article  CAS  Google Scholar 

  12. Pfanner, N., Wiedemann, N., Meisinger, C. & Lithgow, T. Assembling the mitochondrial outer membrane. Nat. Struct. Mol. Biol. 11, 1044–1048 (2004).

    Article  CAS  Google Scholar 

  13. Schleiff, E. & Soll, J. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep. 6, 1023–1027 (2005).

    Article  CAS  Google Scholar 

  14. Hagan, C.L., Silhavy, T.J. & Kahne, D. β-Barrel membrane protein assembly by the Bam complex. Annu. Rev. Biochem. 80, 189–210 (2011).

    Article  CAS  Google Scholar 

  15. Hagan, C.L. & Kahne, D. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of β-barrel assembly. Biochemistry 50, 7444–7446 (2011).

    Article  CAS  Google Scholar 

  16. Gatzeva-Topalova, P.Z., Walton, T.A. & Sousa, M.C. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16, 1873–1881 (2008).

    Article  CAS  Google Scholar 

  17. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    Article  CAS  Google Scholar 

  18. Knowles, T.J. et al. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol. Microbiol. 68, 1216–1227 (2008).

    Article  CAS  Google Scholar 

  19. Arnold, T., Zeth, K. & Linke, D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J. Biol. Chem. 285, 18003–18015 (2010).

    Article  CAS  Google Scholar 

  20. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317, 957–961 (2007).

    Article  CAS  Google Scholar 

  21. Burall, L.S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).

    Article  CAS  Google Scholar 

  22. Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).

    Article  CAS  Google Scholar 

  23. Luirink, J., von Heijne, G., Houben, E. & de Gier, J.W. Biogenesis of inner membrane proteins in Escherichia coli. Annu. Rev. Microbiol. 59, 329–355 (2005).

    Article  CAS  Google Scholar 

  24. Clements, A. et al. The reducible complexity of a mitochondrial molecular machine. Proc. Natl. Acad. Sci. USA 106, 15791–15795 (2009).

    Article  CAS  Google Scholar 

  25. Stenberg, F., von Heijne, G. & Daley, D.O. Assembly of the cytochrome bo3 complex. J. Mol. Biol. 371, 765–773 (2007).

    Article  CAS  Google Scholar 

  26. Ulett, G.C. et al. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect. Immun. 75, 3233–3244 (2007).

    Article  CAS  Google Scholar 

  27. van der Woude, M.W. & Henderson, I.R. Regulation and function of Ag43 (flu). Annu. Rev. Microbiol. 62, 153–169 (2008).

    Article  CAS  Google Scholar 

  28. Wells, T.J. et al. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ. Microbiol. 10, 589–604 (2008).

    Article  CAS  Google Scholar 

  29. Klemm, P., Hjerrild, L., Gjermansen, M. & Schembri, M.A. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol. Microbiol. 51, 283–296 (2004).

    Article  CAS  Google Scholar 

  30. Ieva, R., Skillman, K.M. & Bernstein, H.D. Incorporation of a polypeptide segment into the β-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67, 188–201 (2008).

    Article  CAS  Google Scholar 

  31. Jain, S. & Goldberg, M.B. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J. Bacteriol. 189, 5393–5398 (2007).

    Article  CAS  Google Scholar 

  32. Rossiter, A.E. et al. The essential BAM complex components BamD and BamA are required for autotransporter biogenesis. J. Bacteriol. 193, 4250–4253 (2011).

    Article  CAS  Google Scholar 

  33. Struve, C., Forestier, C. & Krogfelt, K.A. Application of a novel multi-screening signature-tagged mutagenesis assay for identification of Klebsiella pneumoniae genes essential in colonization and infection. Microbiology 149, 167–176 (2003).

    Article  CAS  Google Scholar 

  34. Pusnik, M. et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr. Biol. 21, 1738–1743 (2011).

    Article  CAS  Google Scholar 

  35. Alcock, F., Clements, A., Webb, C. & Lithgow, T. Evolution. Tinkering inside the organelle. Science 327, 649–650 (2010).

    Article  CAS  Google Scholar 

  36. Anwari, K. et al. A modular BAM complex in the outer membrane of the α-proteobacterium Caulobacter crescentus. PLoS ONE 5, e8619 (2010).

    Article  Google Scholar 

  37. Kelly, M. et al. Essential role of the type III secretion system effector NleB in colonization of mice by Citrobacter rodentium. Infect. Immun. 74, 2328–2337 (2006).

    Article  CAS  Google Scholar 

  38. Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  Google Scholar 

  39. McGuffin, L.J., Bryson, K. & Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  Google Scholar 

  40. Owen, P., Meehan, M., de Loughry-Doherty, H. & Henderson, I. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63–76 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Daley from the Department of Chemistry and Biophysics at Stockholm University for reagents, J. Rossjohn for critical discussions and A. Traven and T. Beilharz for critical comments on the manuscript. This work was made possible by the National Health & Medical Research Council (NHMRC) of Australia through an NHMRC Project grant (508911, to T.L. and A.W.P.), an NHMRC Program grant (606788, to T.L., E.L.H. and R.A.S.), an ARC Super Science grant (to T.L. and R.A.S.) and a BBSRC New Investigator grant to D.W. T.L. is an Australian Research Council Federation Fellow, E.L.H. and M.A.S. are ARC Future Fellows, A.W.P. is an NHMRC Senior Research Fellow, C.T.W., M.J.B. and A.J.P. are NHMRC Biomedical Fellows, D.L.L. is an ARC Super Science Fellow and J.S. is supported by an NHMRC Postgraduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

J.S. initiated the project. J.S., C.T.W., M.-D.P., A.J.P., N.C., K.M. and M.J.B. conducted experiments and data analysis. I.R.H., T.J.W., F.M., M.T., R.M.R.-B., M.D.-P., C.O., E.L.H. D.W. and M.K. engineered bacterial strains and conducted experiments and data analysis. A.W.P. and S.H.R carried out and analyzed data from MS experiments. T.L. supervised the project, and T.L., J.S., C.T.W., M.J.B., R.A.S., I.R.H., D.L.L. and M.A.S. contributed to writing the manuscript.

Corresponding author

Correspondence to Trevor Lithgow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkrig, J., Mosbahi, K., Webb, C. et al. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol 19, 506–510 (2012). https://doi.org/10.1038/nsmb.2261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing