Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease

Subjects

Abstract

Celiac disease is a T cell–mediated disease induced by dietary gluten, a component of which is gliadin. 95% of individuals with celiac disease carry the HLA (human leukocyte antigen)-DQ2 locus. Here we determined the T-cell receptor (TCR) usage and fine specificity of patient-derived T-cell clones specific for two epitopes from wheat gliadin, DQ2.5-glia-α1a and DQ2.5-glia-α2. We determined the ternary structures of four distinct biased TCRs specific for those epitopes. All three TCRs specific for DQ2.5-glia-α2 docked centrally above HLA-DQ2, which together with mutagenesis and affinity measurements provided a basis for the biased TCR usage. A non–germline encoded arginine residue within the CDR3β loop acted as the lynchpin within this common docking footprint. Although the TCRs specific for DQ2.5-glia-α1a and DQ2.5-glia-α2 docked similarly, their interactions with the respective gliadin determinants differed markedly, thereby providing a basis for epitope specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactivity pattern of glia-α1– and glia-α2–specific T-cell clones.
Figure 2: Affinity data for TCR–HLA-DQ2.5-gliadin interactions.
Figure 3: Interactions at the interface of S2 and HLA-DQ2-glia-α1a.
Figure 4: Docking of TRBV7-2 TCRs onto HLA-DQ2.
Figure 5: Interactions at the TCR–HLA-DQ2.5-glia-α2 interface.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Abadie, V., Sollid, L.M., Barreiro, L.B. & Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29, 493–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Jabri, B. & Sollid, L.M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Di Sabatino, A. & Corazza, G.R. Coeliac disease. Lancet 373, 1480–1493 (2009).

    Article  PubMed  Google Scholar 

  4. Sollid, L.M. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2, 647–655 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Sollid, L.M. & Jabri, B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. 13, 294–302 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Petersen, J., Purcell, A. & Rossjohn, J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med. 87, 1045–1051 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Karell, K. et al. HLA types in celiac disease patients not carrying the DQA1*05–DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 64, 469–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Shan, L. et al. Structural basis for gluten intolerance in celiac sprue. Science 297, 2275–2279 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Henderson, K.N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, C.Y., Quarsten, H., Bergseng, E., Khosla, C. & Sollid, L.M. Structural basis for HLA-DQ2–mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA 101, 4175–4179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. van de Wal, Y. et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161, 1585–1588 (1998).

    CAS  PubMed  Google Scholar 

  13. Tollefsen, S. et al. HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J. Clin. Invest. 116, 2226–2236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van de Wal, Y. et al. Glutenin is involved in the gluten-driven mucosal T cell response. Eur. J. Immunol. 29, 3133–3139 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. van de Wal, Y. et al. Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc. Natl. Acad. Sci. USA 95, 10050–10054 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arentz-Hansen, H. et al. The intestinal T cell response to α-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J. Exp. Med. 191, 603–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arentz-Hansen, H. et al. Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123, 803–809 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. Qiao, S.W. et al. Tissue transglutaminase-mediated formation and cleavage of histamine-gliadin complexes: biological effects and implications for celiac disease. J. Immunol. 174, 1657–1663 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Vader, W. et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122, 1729–1737 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, R.P., Degano, P., Godkin, A.J., Jewell, D.P. & Hill, A.V.S. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6, 337–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Henderson, K.N. et al. The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 1021–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vader, L.W. et al. Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125, 1105–1113 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl. Acad. Sci. USA 100, 12390–12395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tye-Din, J.A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    Article  PubMed  CAS  Google Scholar 

  25. Broughton, S.E. et al. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37, 611–621 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Qiao, S.W., Christophersen, A., Lundin, K.E. & Sollid, L.M. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int. Immunol. 26, 13–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Qiao, S.W. et al. Posttranslational modification of gluten shapes TCR usage in celiac disease. J. Immunol. 187, 3064–3071 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Han, A. et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc. Natl. Acad. Sci. USA 110, 13073–13078 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Turner, S.J., Doherty, P.C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gras, S., Kjer-Nielsen, L., Burrows, S.R., McCluskey, J. & Rossjohn, J. T-cell receptor bias and immunity. Curr. Opin. Immunol. 20, 119–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Godfrey, D.I., Rossjohn, J. & McCluskey, J. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Immunity 28, 304–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, Y., Li, Y. & Mariuzza, R.A. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol. Rev. 250, 32–48 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. Bulek, A.M. et al. Structural basis for the killing of human β cells by CD8+ T cells in type 1 diabetes. Nat. Immunol. 13, 283–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gras, S. et al. A structural voyage toward an understanding of the MHC-I–restricted immune response: lessons learned and much to be learned. Immunol. Rev. 250, 61–81 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Borg, N.A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bodd, M. et al. Direct cloning and tetramer staining to measure the frequency of intestinal gluten-reactive T cells in celiac disease. Eur. J. Immunol. 43, 2605–2612 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Yin, Y., Li, Y., Kerzic, M.C., Martin, R. & Mariuzza, R.A. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J. 30, 1137–1148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stadinski, B.D. et al. A role for differential variable gene pairing in creating T cell receptors specific for unique major histocompatibility ligands. Immunity 35, 694–704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turner, S.J. & Rossjohn, J. αβ T cell receptors come out swinging. Immunity 35, 660–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Anderson, R.P. & Jabri, B. Vaccine against autoimmune disease: antigen-specific immunotherapy. Curr. Opin. Immunol. 25, 410–417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sollid, L.M., Qiao, S.W., Anderson, R.P., Gianfrani, C. & Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64, 455–460 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Brochet, X., Lefranc, M.P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503–W508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, G.C., Dash, P., McCullers, J.A., Doherty, P.C. & Thomas, P.G. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl. Med. 4, 128ra42 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Clements, C.S. et al. The production, purification and crystallisation of a soluble, heterodimeric form of a highly selected T-cell receptor in its unliganded and liganded state. Acta Crystallogr. D Biol. Crystallogr. 58, 2131–2134 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. McPhillips, T.M. et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Lefranc, M.-P. et al. IMGT, the international ImMunoGeneTics information system(R). Nucleic Acids Res. 33, D593–D597 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y.C. et al. The energetic basis underpinning T-cell receptor recognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule. J. Biol. Chem. 287, 12267–12276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Monash crystallization facility and the Australian Synchrotron for assistance with crystallization and data collection, respectively. This work was supported by the Australian Research Council, the National Health and Medical Research Council (NHMRC) of Australia, the Celiac Disease Consortium and an Innovative Cluster approved by The Netherlands Genomics Initiative and was funded in part by the Dutch government (grant BSIK03009). We thank J. Tye-Din for assistance. J.R. is supported by an Australia Fellowship from the NHMRC.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and V.M. are joint first authors. J.R.M., K.L.L., D.X.B., M.v.L., A.T., M.L.M., J.S., Y.K.-W., J.v.B., J.W.D., W.-T.K., N.L.L.G. and R.P.A. performed experiments, provided key reagents and/or analyzed data and/or provided intellectual input or helped write the manuscript. H.H.R., F.K. and J.R. are joint senior and corresponding authors, co-led the investigation and contributed to the design and interpretation of data, project management and writing of the manuscript.

Ethics declarations

Competing interests

R.P.A. is a co-inventor of patents pertaining to the use gluten peptides in therapeutics, diagnostics and nontoxic gluten. R.P.A. is a shareholder and Chief Scientific Officer of ImmusanT Inc., a company developing a peptide-based therapy and diagnostic suitable for celiac disease.

Integrated supplementary information

Supplementary Figure 1 Unbiased electron density maps of the peptides.

Simulated annealing omit electron density maps (2Fo-Fc) for the peptide in a) S2-HLA-DQ2.5-glia-α1a, b) S16-HLA-DQ2.5-glia-α2, c) D2-HLA-DQ2.5-glia-α2, d) JR5.1-HLA-DQ2.5-glia-α2

Supplementary Figure 2 Affinity measurements of D2 TCR mutants binding to HLA-DQ2.5-glia-α2.

Surface plasmon resonance analysis of D2 TCR mutants interacting with HLA-DQ2.5-glia-α2. a) Concentration series of each TCR were passed over surface immobilized HLA-DQ2.5-glia-α2. For KD determination all data from (n=) replicate experiments was combined for each mutant, and the single ligand binding model was used for curve fitting. The maximal calculated response (not shown) for each concentration series was used for data normalization (normalized response +/− SD). b) Comparison of KD values for binding to HLA-DQ2.5-glia-α2 of the D2 TCR and of the D2 TCR mutants. The dashed and dotted lines represent the cut off for a significant (5-fold) increase and a moderate (3-fold) increase in KD over the value determined for the D2 TCR wildtype (15.8 μM). Significant, moderate or no increase of KD values is represented by striped, grey and empty bars, respectively.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Tables 1–4 (PDF 7684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, J., Montserrat, V., Mujico, J. et al. T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease. Nat Struct Mol Biol 21, 480–488 (2014). https://doi.org/10.1038/nsmb.2817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing