Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites

Abstract

γ-Aminobutyric acid receptors (GABAARs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABAARs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABAAR function requires high-resolution structures. Here we present the first atomic structures of a GABAAR chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABAARs in neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of the GLIC–GABAARα1 chimera.
Figure 2: Structure of the GABAAR chimera.
Figure 3: Coupling at the receptor-chimera ECD–TMD interface.
Figure 4: Structure of the GABAAR chimera channel in a desensitized state.
Figure 5: Interfacial subunit-binding site for the neurosteroid THDOC.
Figure 6: Inhibitory neurosteroid pregnenolone sulfate binds at a distinct site.
Figure 7: Intersubunit anesthetic-binding cavity and aqueous tunnel.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Miller, P.S. & Smart, T.G. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol. Sci. 31, 161–174 (2010).

    CAS  PubMed  Google Scholar 

  2. Corringer, P.J. et al. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 20, 941–956 (2012).

    CAS  PubMed  Google Scholar 

  3. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    CAS  PubMed  Google Scholar 

  4. Braat, S. & Kooy, R.F. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron 86, 1119–1130 (2015).

    CAS  PubMed  Google Scholar 

  5. Rudolph, U. & Möhler, H. GABAA receptor subtypes: therapeutic potential in down syndrome, affective disorders, schizophrenia, and autism. Annu. Rev. Pharmacol. Toxicol. 54, 483–507 (2014).

    CAS  PubMed  Google Scholar 

  6. Mody, I. Distinguishing between GABAA receptors responsible for tonic and phasic conductances. Neurochem. Res. 26, 907–913 (2001).

    CAS  PubMed  Google Scholar 

  7. Smart, T.G. & Paoletti, P. in The Synapse (eds. Sheng, M. et al.) 191–216 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012).

  8. Jones, M.V. & Westbrook, G.L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995).

    CAS  PubMed  Google Scholar 

  9. Bright, D.P. et al. Profound desensitization by ambient GABA limits activation of δ-containing GABAA receptors during spillover. J. Neurosci. 31, 753–763 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gielen, M., Thomas, P. & Smart, T.G. The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 6, 6829 (2015).

    CAS  PubMed  Google Scholar 

  11. Belelli, D. & Lambert, J.J. Neurosteroids: endogenous regulators of the GABAA receptor. Nat. Rev. Neurosci. 6, 565–575 (2005).

    CAS  PubMed  Google Scholar 

  12. Fritschy, J.M. & Brünig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003).

    CAS  PubMed  Google Scholar 

  13. Picton, A.J. & Fisher, J.L. Effect of the α subunit subtype on the macroscopic kinetic properties of recombinant GABAA receptors. Brain Res. 1165, 40–49 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hosie, A.M., Wilkins, M.E., da Silva, H.M.A. & Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489 (2006).

    CAS  PubMed  Google Scholar 

  15. Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 9, 370–386 (2008).

    CAS  PubMed  Google Scholar 

  16. Kang, J.Q. & Macdonald, R.L. Making sense of nonsense GABAA receptor mutations associated with genetic epilepsies. Trends Mol. Med. 15, 430–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hilf, R.J.C. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).

    CAS  PubMed  Google Scholar 

  18. Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).

    CAS  PubMed  Google Scholar 

  19. Moraga-Cid, G. et al. Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure. Proc. Natl. Acad. Sci. USA 112, 2865–2870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilkins, M.E., Hosie, A.M. & Smart, T.G. Identification of a β subunit TM2 residue mediating proton modulation of GABA type A receptors. J. Neurosci. 22, 5328–5333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011).

    CAS  PubMed  Google Scholar 

  22. Sauguet, L. et al. Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat. Commun. 4, 1697–1707 (2013).

    PubMed  Google Scholar 

  23. Sauguet, L. et al. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO J. 32, 728–741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fourati, Z., Sauguet, L. & Delarue, M. Genuine open form of the pentameric ligand-gated ion channel GLIC. Acta Crystallogr. D Biol. Crystallogr. 71, 454–460 (2015).

    CAS  PubMed  Google Scholar 

  25. Kash, T.L., Jenkins, A., Kelley, J.C., Trudell, J.R. & Harrison, N.L. Coupling of agonist binding to channel gating in the GABAA receptor. Nature 421, 272–275 (2003).

    CAS  PubMed  Google Scholar 

  26. Sigel, E., Buhr, A. & Baur, R. Role of the conserved lysine residue in the middle of the predicted extracellular loop between M2 and M3 in the GABAA receptor. J. Neurochem. 73, 1758–1764 (1999).

    CAS  PubMed  Google Scholar 

  27. Hales, T.G. et al. An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. J. Biol. Chem. 281, 17034–17043 (2006).

    CAS  PubMed  Google Scholar 

  28. Kodera, H. et al. De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia 57, 566–573 (2016).

    CAS  PubMed  Google Scholar 

  29. Hibbs, R.E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, P.S. & Aricescu, A.R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Du, J., Lü, W., Wu, S., Cheng, Y. & Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526, 224–229 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, X., Chen, H., Michelsen, K., Schneider, S. & Shaffer, P.L. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 526, 277–280 (2015).

    CAS  PubMed  Google Scholar 

  33. Hénin, J., Salari, R., Murlidaran, S. & Brannigan, G. A predicted binding site for cholesterol on the GABAA receptor. Biophys. J. 106, 1938–1949 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Unwin, N. Neurotransmitter action: opening of ligand-gated ion channels. Cell 72 (Suppl.), 31–41 (1993).

    PubMed  Google Scholar 

  35. Huang, X., Chen, H. & Shaffer, P.L. Crystal structures of human GlyRα3 bound to ivermectin. Structure 25, 945–950.e2 (2017).

    CAS  PubMed  Google Scholar 

  36. Huang, X. et al. Crystal structures of human glycine receptor α3 bound to a novel class of analgesic potentiators. Nat. Struct. Mol. Biol. 24, 108–113 (2017).

    PubMed  Google Scholar 

  37. Velisetty, P. & Chakrapani, S. Desensitization mechanism in prokaryotic ligand-gated ion channel. J. Biol. Chem. 287, 18467–18477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Gutierrez, G. & Grosman, C. Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states. J. Mol. Biol. 403, 693–705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Althoff, T., Hibbs, R.E., Banerjee, S. & Gouaux, E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512, 333–337 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389, 385–389 (1997).

    CAS  PubMed  Google Scholar 

  41. Howard, R.J. et al. Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 108, 12149–12154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Reddy, D.S. & Rogawski, M.A. Neurosteroid replacement therapy for catamenial epilepsy. Neurotherapeutics 6, 392–401 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bracamontes, J.R., Li, P., Akk, G. & Steinbach, J.H. A neurosteroid potentiation site can be moved among GABAA receptor subunits. J. Physiol. (Lond.) 590, 5739–5747 (2012).

    CAS  Google Scholar 

  44. Chen, Z.W. et al. Neurosteroid analog photolabeling of a site in the third transmembrane domain of the β3 subunit of the GABA(A) receptor. Mol. Pharmacol. 82, 408–419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hosie, A.M., Wilkins, M.E. & Smart, T.G. Neurosteroid binding sites on GABA(A) receptors. Pharmacol. Ther. 116, 7–19 (2007).

    CAS  PubMed  Google Scholar 

  46. Covey, D.F. et al. Enantioselectivity of pregnanolone-induced gamma-aminobutyric acid(A) receptor modulation and anesthesia. J. Pharmacol. Exp. Ther. 293, 1009–1016 (2000).

    CAS  PubMed  Google Scholar 

  47. Seljeset, S., Laverty, D. & Smart, T.G. Inhibitory neurosteroids and the GABAA receptor. Adv. Pharmacol. 72, 165–187 (2015).

    CAS  PubMed  Google Scholar 

  48. Akk, G. et al. Mutations of the GABA-A receptor α1 subunit M1 domain reveal unexpected complexity for modulation by neuroactive steroids. Mol. Pharmacol. 74, 614–627 (2008).

    CAS  PubMed  Google Scholar 

  49. Rüsch, D., Zhong, H. & Forman, S.A. Gating allosterism at a single class of etomidate sites on α1β2γ2L GABAA receptors accounts for both direct activation and agonist modulation. J. Biol. Chem. 279, 20982–20992 (2004).

    PubMed  Google Scholar 

  50. Morales-Perez, C.L., Noviello, C.M. & Hibbs, R.E. X-ray structure of the human α4β2 nicotinic receptor. Nature 538, 411–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, G.D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, G.D., Chiara, D.C., Cohen, J.B. & Olsen, R.W. Neurosteroids allosterically modulate binding of the anesthetic etomidate to γ-aminobutyric acid type A receptors. J. Biol. Chem. 284, 11771–11775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007).

    CAS  PubMed  Google Scholar 

  54. Winter, G., Lobley, C.M. & Prince, S.M. Decision making in xia2. Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    PubMed  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    CAS  PubMed  Google Scholar 

  60. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  61. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    CAS  PubMed  Google Scholar 

  62. Pei, J. & Grishin, N.V. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol. Biol. 1079, 263–271 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Ritter, B. et al. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J. 23, 3701–3710 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    PubMed  Google Scholar 

  65. Olsson, M.H.M., Søndergaard, C.R., Rostkowski, M. & Jensen, J.H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    CAS  PubMed  Google Scholar 

  66. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Miettinen, S.M. et al. NMRlipids project. The NMR Lipids Collaboration http://dx.doi.org/10.6084/m9.figshare.1585017 (2015).

  68. Schmidt, T.H. & Kandt, C. LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J. Chem. Inf. Model. 52, 2657–2669 (2012).

    CAS  PubMed  Google Scholar 

  69. Maier, J.A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dickson, C.J. et al. Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10, 865–879 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ryckaert, J.P., Ciccotti, G. & Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

    CAS  Google Scholar 

  72. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MR/K005537/1). D.L. was in receipt of an MRC PhD studentship. O.J.A. was supported by the Carlsberg Foundation. M.G.G. was funded by the Wellcome Trust and Royal Society (104194/Z/14/Z). We thank the beamline staff at Diamond Light Source and ESRF for assistance and advice, A. Cole for technical support (crystallization, data collection and processing), P.-J. Corringer for technical advice and C. Jones for additional mutagenesis and functional electrophysiology. We also thank the Advanced Research Computing (ARC) facility, the EPSRC UK National Service for Computational Chemistry Software (NSCCS) at Imperial College London (grant no. EP/J003921/1) and the ARCHER UK National Supercomputing Services for computer time granted via the UK High-End Computing Consortium for Biomolecular Simulation, HECBioSim (http://www.hecbiosim.ac.uk), supported by EPSRC (grant no. EP/L000253/1).

Author information

Authors and Affiliations

Authors

Contributions

D.L. and T.G.S. jointly planned the project, performed data analyses and wrote the manuscript. D.L. generated the receptor constructs, optimized receptor expression, purification and crystallization, carried out structure solution and model building (assisted by M.G.G. with structural analysis). D.L. and P.T. performed electrophysiology experiments. M.F. carried out site-directed mutagenesis. T.G.S. performed the kinetic modeling. O.J.A. and P.C.B. performed the molecular dynamics simulations and docking. M.G. helped plan and design desensitization experiments. All authors contributed towards editing the manuscript.

Corresponding author

Correspondence to Trevor G Smart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laverty, D., Thomas, P., Field, M. et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat Struct Mol Biol 24, 977–985 (2017). https://doi.org/10.1038/nsmb.3477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3477

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing