Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta

Abstract

The adenomatous polyposis coli (APC) tumour suppressor is a multifunctional protein involved in the regulation of Wnt signalling and cytoskeletal dynamics. Little is known about how APC controls these disparate functions. In this study, we have used APC- and axin-fluorescent fusion proteins to examine the interactions between these proteins and show that the functionally distinct populations of APC are also spatially separate. Axin-RFP forms cytoplasmic punctate structures, similar to endogenous axin puncta. Axin-RFP recruits β-catenin destruction complex proteins, including APC, β-catenin, glycogen synthase kinase-3-β (GSK3-β) and casein kinase-1-α (CK1-α). Recruitment into axin-RFP puncta sequesters APC from clusters at cell extensions and this prevents its microtubule-associated functions. The interaction between APC-GFP and axin-RFP within the cytoplasmic puncta is direct and dramatically alters the dynamic properties of APC-GFP. However, recruitment of APC to axin puncta is not absolutely required for β-catenin degradation. Instead, formation of axin puncta, mediated by the DIX domain, is required for β-catenin degradation. An axinΔDIX mutant did not form puncta, but still mediated recruitment of destruction complex proteins and phosphorylation of β-catenin. We conclude that there are distinct pools of APC and that the formation of axin puncta, rather than the axin/APC complex, is essential for β-catenin destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . (1997). Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth AI, Siemers KA, Nelson WJ . (2002). Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane. J Cell Sci 115: 1583–1590.

    CAS  PubMed  Google Scholar 

  • Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280: 596–599.

    Article  CAS  PubMed  Google Scholar 

  • Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M et al. (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316: 1619–1622.

    Article  CAS  PubMed  Google Scholar 

  • Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA et al. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877–7882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catimel B, Nice EC, Karrlander M, Ross J, Catimel J, Burgess AW et al. (2006). Purification and characterization of a high specificity polyclonal antibody to the adenomatous polyposis coli tumour suppressor protein. Biomed Chromatogr 20: 569–575.

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Krylova O, Smalley MJ, Dale TC, Salinas PC . (2004). A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol 164: 243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton AH, Walker F, Orchard SG, Henderson C, Fuchs D, Rothacker J et al. (2005). Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem 280: 30392–30399.

    Article  CAS  PubMed  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Cliffe A, Hamada F, Bienz M . (2003). A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 13: 960–966.

    Article  CAS  PubMed  Google Scholar 

  • Cong F, Schweizer L, Varmus H . (2004). Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 131: 5103–5115.

    Article  CAS  PubMed  Google Scholar 

  • Dayanandan R, Butler R, Gordon-Weeks PR, Matus A, Kaech S, Lovestone S et al. (2003). Dynamic properties of APC-decorated microtubules in living cells. Cell Motil Cytoskeleton 54: 237–247..

    Article  PubMed  Google Scholar 

  • Fagotto F, Jho E, Zeng L, Kurth T, Joos T, Kaufmann C et al. (1999). Domains of axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization. J Cell Biol 145: 741–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci 117: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Fodde R . (2003). The multiple functions of tumour suppressors: it's all in APC. Nat Cell Biol 5: 190–192.

    Article  CAS  PubMed  Google Scholar 

  • Hanley QS, Clayton AH . (2005). AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers. J Microsc 218: 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H et al. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9: 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P . (1998). Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 8: 573–581.

    Article  CAS  PubMed  Google Scholar 

  • Hsu W, Zeng L, Costantini F . (1999). Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 274: 3439–3445.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289: 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A . (1999). DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 19: 4414–4422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S et al. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem 273: 10823–10826.

    Article  CAS  PubMed  Google Scholar 

  • Kita K, Wittmann T, Nathke IS, Waterman-Storer CM . (2006). Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol Biol Cell 17: 2331–2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18: 2401–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Kroboth K, Newton IP, Kita K, Dikovskaya D, Zumbrunn J, Waterman-Storer CM et al. (2007). Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell 18: 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langford KJ, Askham JM, Lee T, Adams M, Morrison EE . (2006). Examination of actin and microtubule dependent APC localisations in living mammalian cells. BMC Cell Biol 7: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Latres E, Chiaur DS, Pagano M . (1999). The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18: 849–854.

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW . (2003). The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1: E10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leibovitz A, Stinson JC, McCombs III WB, McCoy CE, Mazur KC, Mabry ND . (1976). Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36: 4562–4569.

    CAS  PubMed  Google Scholar 

  • Levina E, Oren M, Ben-Ze’ev A . (2004). Downregulation of beta-catenin by p53 involves changes in the rate of beta-catenin phosphorylation and Axin dynamics. Oncogene 23: 4444–4453.

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R . (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  • Magde D, Rojas GE, Seybold PG . (1999). Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70: 737–744.

    Article  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S . (2000). Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148: 505–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P . (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 92: 3046–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemitsu S, Souza B, Muller O, Albert I, Rubinfeld B, Polakis P . (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54: 3676–3681.

    CAS  PubMed  Google Scholar 

  • Nakamura M, Zhou XZ, Lu KP . (2001). Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 11: 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Hamada F, Ishidate T, Anai K, Kawahara K, Toyoshima K et al. (1998). Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 3: 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Nathke IS . (2004). The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol 20: 337–366.

    Article  PubMed  Google Scholar 

  • Nathke IS, Adams CL, Polakis P, Sellin JH, Nelson WJ . (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 134: 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272: 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Gray RS, Sato A, Habas R, Wallingford JB . (2005). Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos. Curr Biol 15: 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  • Penman GA, Leung L, Nathke IS . (2005). The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J Cell Sci 118: 4741–4750.

    Article  CAS  PubMed  Google Scholar 

  • Polakis P . (1997). The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta 1332: F127–F147.

    CAS  PubMed  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  • Sage D, Neumann FR, Hediger F, Gasser SM, Unser M . (2005). Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14: 1372–1383.

    Article  PubMed  Google Scholar 

  • Sakanaka C, Williams LT . (1999). Functional domains of axin. Importance of the C terminus as an oligomerization domain. J Biol Chem 274: 14090–14093.

    Article  CAS  PubMed  Google Scholar 

  • Saxton MJ, Jacobson K . (1997). Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26: 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Schneikert J, Behrens J . (2007). The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56: 417–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y et al. (2007a). The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 14: 484–492.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M . (2005). The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci 118: 5269–5277.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Romond T, Metcalfe C, Bienz M . (2007b). Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci 120: 2402–2412.

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson BR . (2006). Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem 281: 17140–17149.

    Article  CAS  PubMed  Google Scholar 

  • Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H et al. (1999). Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J 18: 2823–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R et al. (1995). APC binds to the novel protein EB1. Cancer Res 55: 2972–2977.

    CAS  PubMed  Google Scholar 

  • van Munster EB, Gadella Jr TW . (2004). Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order. Cytometry A 58: 185–194.

    Article  PubMed  Google Scholar 

  • Watanabe T, Wang S, Noritake J, Sato K, Fukata M, Takefuji M et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7: 871–883.

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et al. (2004). EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6: 820–830.

    Article  CAS  PubMed  Google Scholar 

  • Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F . (2004). Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway. J Biol Chem 279: 5263–5267.

    Article  CAS  PubMed  Google Scholar 

  • Wilson KM, Morrison IE, Smith PR, Fernandez N, Cherry RJ . (1996). Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J Cell Sci 109 (Part 8): 2101–2109.

    CAS  PubMed  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW . (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13: 270–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry III WL et al. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90: 181–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr M Prescott, Dr F Costantini and Dr D Capelluto for cDNA constructs. MCF, MJL and AWB are supported by NH&MRC program grant 234703; AHAC is an NH&MRC RD Wright Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M C Faux.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faux, M., Coates, J., Catimel, B. et al. Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta. Oncogene 27, 5808–5820 (2008). https://doi.org/10.1038/onc.2008.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.205

Keywords

This article is cited by

Search

Quick links