Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression

Abstract

ErbB2/HER2/Neu-overexpressing breast cancers are characterized by poor survival due to high proliferation and metastasis rates and identifying downstream targets of ErbB2 should facilitate developing novel therapies for this disease. Gene expression profiling revealed the transcriptional regulator LIM-only protein 4 (LMO4) is upregulated during ErbB2-induced mouse mammary gland tumorigenesis. Although LMO4 is frequently overexpressed in breast cancer and LMO4-overexpressing mice develop mammary epithelial tumors, the mechanisms involved are unknown. In this study, we report that LMO4 is a downstream target of ErbB2 and PI3K in ErbB2-dependent breast cancer cells. Furthermore, LMO4 silencing reduces proliferation of these cells, inducing a G2/M arrest that was associated with decreased cullin-3, an E3-ubiquitin ligase component important for mitosis. Loss of LMO4 subsequently results in reduced Cyclin D1 and Cyclin E. Further supporting a role for LMO4 in modulating proliferation by regulating cullin-3 expression, we found that LMO4 expression oscillates throughout the cell cycle with maximum expression occurring during G2/M and these changes precede oscillations in cullin-3 levels. LMO4 levels are also highest in high-grade/less differentiated breast cancers, which are characteristically highly proliferative. We conclude that LMO4 is a novel cell cycle regulator with a key role in mediating ErbB2-induced proliferation, a hallmark of ErbB2-positive disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andrechek ER, White D, Muller WJ . (2005). Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene 24: 932–937.

    Article  CAS  PubMed  Google Scholar 

  • Beerli RR, Hynes NE . (1996). Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 271: 6071–6076.

    Article  CAS  PubMed  Google Scholar 

  • Ben Levy R, Paterson HF, Marshall CJ, Yarden Y . (1994). A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP kinase pathway. EMBO J 13: 3302–3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporossi D, Vernole P, Nicoletti B, Tedeschi B . (1995). Characteristic chromosomal fragility of human embryonic cells exposed in vitro to aphidicolin. Hum Genet 96: 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Xu J, Safarpour F, Stewart AF . (2007). LMO4 mRNA stability is regulated by extracellular ATP in F11 cells. Biochem Biophys Res Commun 357: 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Dankort DL, Muller WJ . (2000). Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene 19: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  • Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al. (2002). Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99: 6967–6972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al. (2007). Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13: 3207–3214.

    Article  CAS  PubMed  Google Scholar 

  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE . (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail IA, Kang KS, Lee HA, Kim JW, Sohn YK . (2007). Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation. Eur J Pharmacol 575: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. (2006). Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292–10301.

    Article  CAS  PubMed  Google Scholar 

  • Junaid A, Moon MC, Harding GE, Zahradka P . (2007). Osteopontin localizes to the nucleus of 293 cells and associates with polo-like kinase-1. Am J Physiol Cell Physiol 292: C919–C926.

    Article  CAS  PubMed  Google Scholar 

  • Kraus MH, Popescu NC, Amsbaugh SC, King CR . (1987). Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuraguchi M, Ohene-Baah NY, Sonkin D, Bronson RT, Kucherlapati R . (2009). Genetic mechanisms in apc-mediated mammary tumorigenesis. PLoS Genet 5: e1000367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M . (2004). Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23: 3092–3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis MD, Seachrist DD, Montanez-Wiscovich ME, Danielpour D, Keri RA . (2005). Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-beta signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene 24: 5173–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G et al. (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20: 672–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL . (2001). ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 61: 6583–6591.

    CAS  PubMed  Google Scholar 

  • Lewis GD, Lofgren JA, McMurtrey AE, Nuijens A, Fendly BM, Bauer KD et al. (1996). Growth regulation of human breast and ovarian tumor cells by heregulin: Evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 56: 1457–1465.

    CAS  PubMed  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Mosley JD, Keri RA . (2008). Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists. BMC Med Genomics 1: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R et al. (2002). Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62: 1256–1260.

    CAS  PubMed  Google Scholar 

  • Peles E, Lamprecht R, Ben Levy R, Tzahar E, Yarden Y . (1992). Regulated coupling of the Neu receptor to phosphatidylinositol 3′-kinase and its release by oncogenic activation. J Biol Chem 267: 12266–12274.

    CAS  PubMed  Google Scholar 

  • Peles E, Levy RB, Or E, Ullrich A, Yarden Y . (1991). Oncogenic forms of the neu/HER2 tyrosine kinase are permanently coupled to phospholipase C gamma. EMBO J 10: 2077–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672.

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T . (1989). Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58: 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Rabbitts TH . (1998). LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev 12: 2651–2657.

    Article  CAS  PubMed  Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed SI . (1994). Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribar B, Prakash L, Prakash S . (2007). ELA1 and CUL3 are required along with ELC1 for RNA polymerase II polyubiquitylation and degradation in DNA-damaged yeast cells. Mol Cell Biol 27: 3211–3216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Margalet V, Goldfine ID, Vlahos CJ, Sung CK . (1994). Role of phosphatidylinositol-3-kinase in insulin receptor signaling: studies with inhibitor, LY294002. Biochem Biophys Res Commun 204: 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M et al. (2002). Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20: 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Stern DF . (2003). ErbBs in mammary development. Exp Cell Res 284: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara TM, Bach I, Kioussi C, Rosenfeld MG, Andersen B . (1998). Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. Proc Natl Acad Sci USA 95: 15418–15423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sum EY, O'Reilly LA, Jonas N, Lindeman GJ, Visvader JE . (2005a). The LIM domain protein Lmo4 is highly expressed in proliferating mouse epithelial tissues. J Histochem Cytochem 53: 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Sum EY, Peng B, Yu X, Chen J, Byrne J, Lindeman GJ et al. (2002). The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity. J Biol Chem 277: 7849–7856.

    Article  CAS  PubMed  Google Scholar 

  • Sum EY, Segara D, Duscio B, Bath ML, Field AS, Sutherland RL et al. (2005b). Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc Natl Acad Sci USA 102: 7659–7664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sum EY, Shackleton M, Hahm K, Thomas RM, O'Reilly LA, Wagner KU et al. (2005c). Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene 24: 4820–4828.

    Article  CAS  PubMed  Google Scholar 

  • Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R et al. (2007). A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell 12: 887–900.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland KD, Visvader JE, Choong DY, Sum EY, Lindeman GJ, Campbell IG . (2003). Mutational analysis of the LMO4 gene, encoding a BRCA1-interacting protein, in breast carcinomas. Int J Cancer 107: 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki M, Daigo Y, Ishikawa N, Takano A, Tsunoda T, Yasui W et al. (2006). Gene expression profiles of small-cell lung cancers: molecular signatures of lung cancer. Int J Oncol 29: 567–575.

    CAS  PubMed  Google Scholar 

  • Visvader JE, Venter D, Hahm K, Santamaria M, Sum EY, O'Reilly L et al. (2001). The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc Natl Acad Sci USA 98: 14452–14457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Kudryavtseva E, Ch'en IL, McCormick J, Sugihara TM, Ruiz R et al. (2004). Expression of an engrailed-LMO4 fusion protein in mammary epithelial cells inhibits mammary gland development in mice. Oncogene 23: 1507–1513.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Lin KK, Lu Z, Lam KS, Newton R, Xu X et al. (2007). The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene 26: 6431–6441.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Caldwell MC, Lin S, Furneaux H, Gorospe M . (2000). HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J 19: 2340–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittlin S, Sum EY, Jonas NK, Lindeman GJ, Visvader JE . (2003). Two promoters within the human LMO4 gene contribute to its overexpression in breast cancer cells. Genomics 82: 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M et al. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425: 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . (2002). Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: 4132–4141.

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N et al. (1986). Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319: 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jonathan Mosley for help with statistical analyses, Meredith Sorenson for technical support and members of the Keri laboratory, especially Gina Bernardo and Emhonta Johnson, for useful discussions. We are grateful for assistance from the Case Comprehensive Cancer Center core facilities (P30 CA43703). This work was supported by: RO1-CA090398 (RAK), CURE supplementary grant to RO1-CA090398 (RAK), NIH AR44882 (BA), T32-GM007250 (MEMW) and F31-CA123642 (MEMW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Keri.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montañez-Wiscovich, M., Seachrist, D., Landis, M. et al. LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene 28, 3608–3618 (2009). https://doi.org/10.1038/onc.2009.221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.221

Keywords

This article is cited by

Search

Quick links