Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress

Abstract

The E6AP E3 ubiquitin ligase has been linked to the regulation of cell growth and to the cellular stress response. However, the specific stress conditions that are controlled by E6AP have not been defined. An important stress condition that controls cell growth is oxidative stress, where the levels of intracellular reactive oxygen species (ROS) regulate the appropriate cellular response. Here, we describe a novel role for E6AP in the control of oxidative stress response. Cells lacking E6AP expression have reduced capacity to accumulate ROS, and oxidative DNA damage, in response to 20% cell culture oxygen levels, treatment with hydrogen peroxide and expression of oncogenic RAS. This effect of E6AP is associated with the regulation of the anti-oxidant enzyme, Prx1, a previously identified target of E6AP, and can be corrected by downregulation of Prx1 or by reconstitution of E6AP expression. Consequently, cells with compromised E6AP have impaired senescent and apoptotic response to sub-lethal and lethal doses of oxidative stress, respectively. In a xenograft model, downregulation of E6AP renders transplanted tumours refractory to growth-suppressive effects of hydrogen peroxide. Our results provide the first demonstration that E6AP is an important regulator of ROS-mediated cellular senescence and cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Finkel T . Signal transduction by reactive oxygen species. J Cell Biol 2011; 194: 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finkel T, Holbrook NJ . Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239–247.

    Article  CAS  PubMed  Google Scholar 

  3. D’Autreaux B, Toledano MB . ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8: 813–824.

    Article  PubMed  Google Scholar 

  4. Bertram C, Hass R . Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem 2008; 389: 211–220.

    Article  CAS  PubMed  Google Scholar 

  5. Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N, Jaruga P et al. Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 2005; 24: 8038–8050.

    Article  CAS  PubMed  Google Scholar 

  6. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003; 424: 561–565.

    Article  CAS  PubMed  Google Scholar 

  7. Jones FS, Meech R, Edelman DB, Oakey RJ, Jones PL . Prx1 controls vascular smooth muscle cell proliferation and tenascin-C expression and is upregulated with Prx2 in pulmonary vascular disease. Circ Res 2001; 89: 131–138.

    Article  CAS  PubMed  Google Scholar 

  8. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y . Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 2009; 219: 3–15.

    CAS  PubMed  Google Scholar 

  9. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  10. Lu T, Finkel T . Free radicals and senescence. Exp Cell Res 2008; 314: 1918–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Busuttil RA, Rubio M, Dolle ME, Campisi J, Vijg J . Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2003; 2: 287–294.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshizaki K, Fujiki T, Tsunematsu T, Yamashita M, Udono M, Shirahata S et al. Pro-senescent effect of hydrogen peroxide on cancer cells and its possible application to tumor suppression. Biosci Biotechnol Biochem 2009; 73: 311–315.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Q, Ames BN . Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 1994; 91: 4130–4134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN . Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 1998; 332: 43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bladier C, Wolvetang EJ, Hutchinson P, de Haan JB, Kola I . Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ 1997; 8: 589–598.

    CAS  PubMed  Google Scholar 

  17. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274: 7936–7940.

    Article  CAS  PubMed  Google Scholar 

  18. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 2012; 31: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  19. Wolyniec K, Wotton S, Kilbey A et al. RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene 2009; 28: 2502–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leikam C, Hufnagel A, Schartl M, Meierjohann S . Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 2008; 27: 7070–7082.

    Article  CAS  PubMed  Google Scholar 

  21. Beaudenon S, Huibregtse JM . HPV E6, E6AP and cervical cancer. BMC Biochem 2008; 9: S4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M . Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 2001; 98: 1218–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howley PM . Warts, cancer and ubiquitylation: lessons from the papillomaviruses. Trans Am Clin Climatol Assoc 2006; 117: 113–126.

    PubMed  PubMed Central  Google Scholar 

  24. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  25. Matentzoglu K, Scheffner M . Ubiquitin ligase E6-AP and its role in human disease. Biochem Soc Trans 2008; 36: 797–801.

    Article  CAS  PubMed  Google Scholar 

  26. Levav-Cohen Y, Wolyniec K, Alsheich-Bartok O, Chan AL, Woods SJ, Jiang YH et al. E6AP is required for replicative and oncogene-induced senescence in mouse embryo fibroblasts. Oncogene 2012; 31: 2199–209.

    Article  CAS  PubMed  Google Scholar 

  27. Nasu J, Murakami K, Miyagawa S, Yamashita R, Ichimura T, Wakita T et al. E6AP ubiquitin ligase mediates ubiquitin-dependent degradation of peroxiredoxin 1. J Cell Biochem 2010; 111: 676–685.

    Article  CAS  PubMed  Google Scholar 

  28. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92: 4337–4341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Loon B, Markkanen E, Hubscher U . Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair 2010; 9: 604–616.

    Article  CAS  PubMed  Google Scholar 

  31. Bacsi A, Chodaczek G, Hazra TK, Konkel D, Boldogh I . Increased ROS generation in subsets of OGG1 knockout fibroblast cells. Mech Ageing Dev 2007; 128: 637–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. GammaH2AX and cancer. Nat Rev Cancer 2008; 8: 957–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. d’Adda di Fagagna F . Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008; 8: 512–522.

    Article  PubMed  Google Scholar 

  34. Ben-Yoseph O, Ross BD . Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer 1994; 70: 1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nathan CF, Cohn ZA . Antitumor effects of hydrogen peroxide in vivo. J Exp Med 1981; 154: 1539–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sugiura K . Effect of hydrogen peroxide on transplanted rat and mouse tumours. Nature 1958; 182: 1310–1311.

    Article  CAS  PubMed  Google Scholar 

  37. Vurusaner B, Poli G, Basaga H . Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 2012; 52: 7–18.

    Article  CAS  PubMed  Google Scholar 

  38. Ramamoorthy S, Tufail R, Hokayem JE, Jorda M, Zhao W, Reis Z et al. Overexpression of ligase defective E6-associated protein, E6-AP, results in mammary tumorigenesis. Breast Cancer Res Treat 2012; 132: 97–108.

    Article  CAS  PubMed  Google Scholar 

  39. Cha MK, Suh KH, Kim IH . Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma. J Exp Clin Cancer Res 2009; 28: 93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  41. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 2009; 28: 1505–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  43. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Scott Lowe, Martin Scheffner and Ikuo Shoji who generously provided plasmids. This work was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia to YH (NHMRC #509196, #509197, #1026990, #1026988), by a grant from the Cancer Council Victoria, and by the VESKI award. YH is NHMRC Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Haupt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolyniec, K., Levav-Cohen, Y., Jiang, YH. et al. The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress. Oncogene 32, 3510–3519 (2013). https://doi.org/10.1038/onc.2012.365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.365

Keywords

This article is cited by

Search

Quick links