Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

N-(phosphonacetyl)-L-aspartate induces TAp73-dependent apoptosis by modulating multiple Bcl-2 proteins: potential for cancer therapy

Abstract

p53 is essential for the cellular responses to DNA damage that help to maintain genomic stability. However, the great majority of human cancers undergo disruption of the p53-network. Identification and characterization of molecular components important in both p53-dependent and -independent apoptosis might be useful in developing novel therapies for cancers. In the complete absence of p53, cells treated with N-(phosphonacetyl)-L-aspartate (PALA) continue to synthesize DNA slowly and eventually progress through S-phase, suffering severe DNA damage that in turn triggers apoptosis, whereas cells with functional p53 undergo growth arrest. In this study, we investigated apoptotic signaling in response to PALA and the role of p53 expression in this pathway. We found that treatment of cells lacking p53 with PALA induced TAp73, Noxa and Bim and inactivation of these proteins with dominant-negative plasmids or small interfering RNAs significantly inhibited apoptosis, suggesting that PALA-induced apoptosis was mediated via TAp73-dependent expression of Noxa and Bim. However, PALA treatment inhibited the expression of ΔNp73 only in cells lacking p53 but not in cells expressing p53. In addition, PALA treatment inhibited Bcl-2, and overexpression of Bcl-2 significantly inhibited PALA-induced apoptosis. Moreover, expression of p53 in these cells protected them from PALA-induced apoptosis by activating p21, sustaining the expression of ΔNp73 and inhibiting the induction of Noxa and Bim. Taken together, our study identifies novel but opposing roles for the p53 and TAp73 in the induction of Noxa and Bim and regulation of apoptosis. Our data will help to develop strategies to eliminate cancer cells lacking p53 while protecting normal cells with wild-type p53.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Farnebo M, Bykov VJ, Wiman KG . The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun 2010; 396: 85–89.

    Article  CAS  PubMed  Google Scholar 

  2. Gottlieb E, Vousden KH . p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2010; 2: a001040.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zilfou JT, Lowe SW . Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009; 1: a001883.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Joerger AC, Fersht AR . The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2010; 2: a000919.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sedletska Y, Giraud-Panis MJ, Malinge JM . Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: importance of apoptotic pathways. Curr Med Chem Anticancer Agents 2005; 5: 251–265.

    Article  CAS  PubMed  Google Scholar 

  6. Chung J, Irwin MS . Targeting the p53-family in cancer and chemosensitivity: triple threat. Curr Drug Targets 2010; 11: 667–681.

    Article  CAS  PubMed  Google Scholar 

  7. Amin AR, Kucuk O, Khuri FR, Shin DM . Perspectives for cancer prevention with natural compounds. J Clin Oncol 2009; 27: 2712–2725.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wiman KG . Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 2010; 29: 4245–4252.

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR . The p53 network. J Biol Chem 1998; 273: 1–4.

    Article  CAS  PubMed  Google Scholar 

  10. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  11. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 1998; 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

  12. Amin AR, Paul RK, Thakur VS, Agarwal ML . A novel role for p73 in the regulation of Akt-Foxo1a-Bim signaling and apoptosis induced by the plant lectin, Concanavalin A. Cancer Res 2007; 67: 5617–5621.

    Article  CAS  PubMed  Google Scholar 

  13. Amin AR, Thakur VS, Paul RK, Feng GS, Qu CK, Mukhtar H et al. SHP-2 tyrosine phosphatase inhibits p73-dependent apoptosis and expression of a subset of p53 target genes induced by EGCG. Proc Natl Acad Sci USA 2007; 104: 5419–5424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV et al. p73 in Cancer. Genes Cancer 2011; 2: 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. John K, Alla V, Meier C, Putzer BM . GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ 2011; 18: 874–886.

    Article  CAS  PubMed  Google Scholar 

  16. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  17. Melino G, Lu X, Gasco M, Crook T, Knight RA . Functional regulation of p73 and p63: development and cancer. Trends Biochem Sci 2003; 28: 663–670.

    Article  CAS  PubMed  Google Scholar 

  18. Lunghi P, Costanzo A, Mazzera L, Rizzoli V, Levrero M, Bonati A . The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting. Clin Cancer Res 2009; 15: 6495–6502.

    Article  CAS  PubMed  Google Scholar 

  19. Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G . p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2010; 2: a004887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ichimiya S, Nimura Y, Kageyama H, Takada N, Sunahara M, Shishikura T et al. p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 1999; 18: 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  21. Douc-Rasy S, Barrois M, Echeynne M, Kaghad M, Blanc E, Raguenez G et al. DeltaN-p73alpha accumulates in human neuroblastic tumors. Am J Pathol 2002; 160: 631–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dominguez G, Garcia JM, Pena C, Silva J, Garcia V, Martinez L et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 2006; 24: 805–815.

    Article  CAS  PubMed  Google Scholar 

  23. Zaika AI, Kovalev S, Marchenko ND, Moll UM . Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res 1999; 59: 3257–3263.

    CAS  PubMed  Google Scholar 

  24. Ng SW, Yiu GK, Liu Y, Huang LW, Palnati M, Jun SH et al. Analysis of p73 in human borderline and invasive ovarian tumor. Oncogene 2000; 19: 1885–1890.

    Article  CAS  PubMed  Google Scholar 

  25. Tannapfel A, Wasner M, Krause K, Geissler F, Katalinic A, Hauss J et al. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Inst 1999; 91: 1154–1158.

    Article  CAS  PubMed  Google Scholar 

  26. Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM . Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 1998; 9: 897–903.

    CAS  PubMed  Google Scholar 

  27. Yokomizo A, Mai M, Tindall DJ, Cheng L, Bostwick DG, Naito S et al. Overexpression of the wild type p73 gene in human bladder cancer. Oncogene 1999; 18: 1629–1633.

    Article  CAS  PubMed  Google Scholar 

  28. Yokomizo A, Mai M, Bostwick DG, Tindall DJ, Qian J, Cheng L et al. Mutation and expression analysis of the p73 gene in prostate cancer. Prostate 1999; 39: 94–100.

    Article  CAS  PubMed  Google Scholar 

  29. Sunahara M, Ichimiya S, Nimura Y, Takada N, Sakiyama S, Sato Y et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998; 13: 319–323.

    CAS  PubMed  Google Scholar 

  30. Loukopoulos P, Shibata T, Katoh H, Kokubu A, Sakamoto M, Yamazaki K et al. Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma: identification of genetic indicators that predict patient outcome. Cancer Sci 2007; 98: 392–400.

    Article  CAS  PubMed  Google Scholar 

  31. Malaguarnera R, Vella V, Vigneri R, Frasca F . p53 family proteins in thyroid cancer. Endocr Relat Cancer 2007; 14: 43–60.

    Article  CAS  PubMed  Google Scholar 

  32. Leupin N, Luthi A, Novak U, Grob TJ, Hugli B, Graber H et al. P73 status in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma 2004; 45: 1205–1207.

    Article  CAS  PubMed  Google Scholar 

  33. Tschan MP, Grob TJ, Peters UR, Laurenzi VD, Huegli B, Kreuzer KA et al. Enhanced p73 expression during differentiation and complex p73 isoforms in myeloid leukemia. Biochem Biophys Res Commun 2000; 277: 62–65.

    Article  CAS  PubMed  Google Scholar 

  34. Faridoni-Laurens L, Tourpin S, Alsafadi S, Barrois M, Temam S, Janot F et al. Involvement of N-terminally truncated variants of p73, deltaTAp73, in head and neck squamous cell cancer: a comparison with p53 mutations. Cell Cycle 2008; 7: 1587–1596.

    Article  CAS  PubMed  Google Scholar 

  35. Swyryd EA, Seaver SS, Stark GR . N-(phosphonacetyl)-L-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J Biol Chem 1974; 249: 6945–6950.

    CAS  PubMed  Google Scholar 

  36. Agarwal ML, Agarwal A, Taylor WR, Chernova O, Sharma Y, Stark GR . A p53-dependent S-phase checkpoint helps to protect cells from DNA damage in response to starvation for pyrimidine nucleotides. Proc Natl Acad Sci USA 1998; 95: 14775–14780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agarwal MK, Hastak K, Jackson MW, Breit SN, Stark GR, Agarwal ML . Macrophage inhibitory cytokine 1 mediates a p53-dependent protective arrest in S phase in response to starvation for DNA precursors. Proc Natl Acad Sci USA 2006; 103: 16278–16283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM . Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70: 937–948.

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal ML, Agarwal A, Taylor WR, Stark GR . p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 1995; 92: 8493–8497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paulson TG, Almasan A, Brody LL, Wahl GM . Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 1998; 18: 3089–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moffitt KL, Martin SL, Walker B . From sentencing to execution—the processes of apoptosis. J Pharm Pharmacol 2010; 62: 547–562.

    Article  CAS  PubMed  Google Scholar 

  42. Brenner D, Mak TW . Mitochondrial cell death effectors. Curr Opin Cell Biol 2009; 21: 871–877.

    Article  CAS  PubMed  Google Scholar 

  43. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR . The BCL-2 family reunion. Mol Cell 2010; 37: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leibowitz B, Yu J . Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther 2010; 9: 417–422.

    Article  CAS  PubMed  Google Scholar 

  45. Ghiotto F, Fais F, Bruno S . BH3-only proteins: the death-puppeteer's wires. Cytometry A 2010; 77: 11–21.

    PubMed  Google Scholar 

  46. Lomonosova E, Chinnadurai G . BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2008; 27 (Suppl 1): S2–S19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 2005; 17: 393–403.

    Article  CAS  PubMed  Google Scholar 

  48. O’Connor L, Strasser A, O’Reilly LA, Hausmann G, Adams JM, Cory S et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 1998; 17: 384–395.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li R, Moudgil T, Ross HJ, Hu HM . Apoptosis of non-small-cell lung cancer cell lines after paclitaxel treatment involves the BH3-only proapoptotic protein Bim. Cell Death Differ 2005; 12: 292–303.

    Article  CAS  PubMed  Google Scholar 

  50. Toh WH, Nam SY, Sabapathy K . An essential role for p73 in regulating mitotic cell death. Cell Death Differ 2010; 17: 787–800.

    Article  CAS  PubMed  Google Scholar 

  51. Busuttil V, Droin N, McCormick L, Bernassola F, Candi E, Melino G et al. NF-kappaB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc Natl Acad Sci USA 2010; 107: 18061–18066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amin AR, Thakur VS, Gupta K, Jackson MW, Harada H, Agarwal MK et al. Restoration of p53 functions protects cells from concanavalin A-induced apoptosis. Mol Cancer Ther 2010; 9: 471–479.

    Article  CAS  PubMed  Google Scholar 

  53. Miyaguchi Y, Tsuchiya K, Sakamoto K . P53 negatively regulates the transcriptional activity of FOXO3a under oxidative stress. Cell Biol Int 2009; 33: 853–860.

    Article  CAS  PubMed  Google Scholar 

  54. Di Como CJ, Gaiddon C, Prives C . p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 1999; 19: 1438–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Amin AR, Wang D, Zhang H, Peng S, Shin HJ, Brandes JC et al. Enhanced anti-tumor activity by the combination of the natural compounds (-)-epigallocatechin-3-gallate and luteolin: potential role of p53. J Biol Chem 2010; 285: 34557–34565.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Linke SP, Clarkin KC, Di Leonardo A, Tsou A, Wahl GM . A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 1996; 10: 934–947.

    Article  CAS  PubMed  Google Scholar 

  57. Wadler S, Gleissner B, Hilgenfeld RU, Thiel E, Haynes H, Kaleya R et al. Phase II trial of N-(phosphonacetyl)-L-aspartate (PALA), 5-fluorouracil and recombinant interferon-alpha-2b in patients with advanced gastric carcinoma. Eur J Cancer 1996; 32A: 1254–1256.

    Article  CAS  PubMed  Google Scholar 

  58. Redei I, Green F, Hoffman JP, Weiner LM, Scher R, O’Dwyer PJ . Phase II trial of PALA and 6-methylmercaptopurine riboside (MMPR) in combination with 5-fluorouracil in advanced pancreatic cancer. Invest New Drugs 1994; 12: 319–321.

    Article  CAS  PubMed  Google Scholar 

  59. Grem JL, McAtee N, Steinberg SM, Hamilton JM, Murphy RF, Drake J et al. A phase I study of continuous infusion 5-fluorouracil plus calcium leucovorin in combination with N-(phosphonacetyl)-L-aspartate in metastatic gastrointestinal adenocarcinoma. Cancer Res 1993; 53: 4828–4836.

    CAS  PubMed  Google Scholar 

  60. Ibrahim N, He L, Leong CO, Xing D, Karlan BY, Swisher EM et al. BRCA1-associated epigenetic regulation of p73 mediates an effector pathway for chemosensitivity in ovarian carcinoma. Cancer Res 2010; 70: 7155–7165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chakraborty J, Banerjee S, Ray P, Hossain DM, Bhattacharyya S, Adhikary A et al. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells. J Biol Chem 2010; 285: 33104–33112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vilgelm A, El-Rifai W, Zaika A . Therapeutic prospects for p73 and p63: rising from the shadow of p53. Drug Resist Updat 2008; 11: 152–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ozaki T, Nakagawara A . p73, a sophisticated p53 family member in the cancer world. Cancer Sci 2005; 96: 729–737.

    Article  CAS  PubMed  Google Scholar 

  64. Kirschnek S, Vier J, Gautam S, Frankenberg T, Rangelova S, Eitz-Ferrer P et al. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa. Cell Death Differ 2011; 18: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santidrian AF, Gonzalez-Girones DM, Iglesias-Serret D, Coll-Mulet L, Cosialls AM, de Frias M et al. AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood 2010; 116: 3023–3032.

    Article  CAS  PubMed  Google Scholar 

  66. Morales AA, Gutman D, Lee KP, Boise LH . BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 2008; 111: 5152–5162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  68. Hastak K, Paul RK, Agarwal MK, Thakur VS, Amin AR, Agrawal S et al. DNA synthesis from unbalanced nucleotide pools causes limited DNA damage that triggers ATR-CHK1-dependent p53 activation. Proc Natl Acad Sci USA 2008; 105: 6314–6319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399: 806–809.

    Article  CAS  PubMed  Google Scholar 

  70. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999; 399: 814–817.

    Article  CAS  PubMed  Google Scholar 

  71. Gottifredi V, Karni-Schmidt O, Shieh SS, Prives C . p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol 2001; 21: 1066–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lohr K, Moritz C, Contente A, Dobbelstein M . p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 2003; 278: 32507–32516.

    Article  PubMed  Google Scholar 

  73. Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R et al. p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem 2004; 279: 50976–50985.

    Article  CAS  PubMed  Google Scholar 

  74. Maisse C, Munarriz E, Barcaroli D, Melino G, De Laurenzi V . DNA damage induces the rapid and selective degradation of the DeltaNp73 isoform, allowing apoptosis to occur. Cell Death Differ 2004; 11: 685–687.

    Article  CAS  PubMed  Google Scholar 

  75. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 2010; 24: 549–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bischoff FZ, Strong LC, Yim SO, Pratt DR, Siciliano MJ, Giovanella BC et al. Tumorigenic transformation of spontaneously immortalized fibroblasts from patients with a familial cancer syndrome. Oncogene 1991; 6: 183–186.

    CAS  PubMed  Google Scholar 

  77. Hastak K, Agarwal MK, Mukhtar H, Agarwal ML . Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. FASEB J 2005; 19: 789–791.

    Article  CAS  PubMed  Google Scholar 

  78. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000; 407: 645–648.

    Article  CAS  PubMed  Google Scholar 

  79. Heo DS, Snyderman C, Gollin SM, Pan S, Walker E, Deka R et al. Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 1989; 49: 5167–5175.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr George R Stark (Cleveland Clinic Foundation) for his continuous encouragement and criticism throughout the course of the work and critically reading and editing the manuscript, and to Dr Anthea Hammond (Emory University) for editorial assistance. We also thank Dr Rajib K Paul for screening SKp53 cells. This work was supported by National Institutes of Health Grants R01 CA98916 to MLA and P50 CA128613 to DMS and ARA. ARA is a recipient of Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A R M Ruhul Amin or M L Agarwal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruhul Amin, A., Thakur, V., Gupta, K. et al. N-(phosphonacetyl)-L-aspartate induces TAp73-dependent apoptosis by modulating multiple Bcl-2 proteins: potential for cancer therapy. Oncogene 32, 920–929 (2013). https://doi.org/10.1038/onc.2012.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.96

Keywords

This article is cited by

Search

Quick links