Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo

Abstract

Lung cancer is the leading cause of cancer deaths worldwide with non small-cell lung cancer (NSCLC) accounting for 80% of all lung cancers. Although activating mutations in genes of the RAS-MAPK pathway occur in up to 30% of all NSCLC, the cooperating genetic lesions that are required for lung cancer initiation and progression remain poorly understood. Here we identify a role for the cell polarity regulator Scribble (Scrib) in NSCLC. A survey of genomic databases reveals deregulation of SCRIB in human lung cancer and we show that Scrib+/− mutant mice develop lung cancer by 540 days with a penetrance of 43%. To model NSCLC development in vivo, we used the extensively characterized LSL-KRasG12D murine model of NSCLC. We show that loss of Scrib and activated oncogenic KRas cooperate in vivo, resulting in more aggressive lung tumors, likely due to a synergistic elevation in RAS–MAPK signaling. Finally, we provide data consistent with immune infiltration having an important role in the acceleration of tumorigenesis in KRasG12D lung tumors following Scrib loss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Travis WD . Pathology of lung cancer. Clin Chest Med 2002; 23: 65–81 viii.

    Article  Google Scholar 

  2. Meuwissen R, Berns A . Mouse models for human lung cancer. Genes Dev 2005; 19: 643–664.

    Article  CAS  Google Scholar 

  3. Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001; 15: 3249–3262.

    Article  CAS  Google Scholar 

  4. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 2005; 65: 10280–10288.

    Article  CAS  Google Scholar 

  5. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007; 448: 807–810.

    Article  CAS  Google Scholar 

  6. Bilder D, Li M, Perrimon N . Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 2000; 289: 113–116.

    Article  CAS  Google Scholar 

  7. Bryant PJ, Huwe A . LAP proteins: what's up with epithelia? Nat Cell Biol 2000; 2: E141–E143.

    Article  CAS  Google Scholar 

  8. Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119: 1285–1290.

    Article  CAS  Google Scholar 

  9. Kamei Y, Kito K, Takeuchi T, Imai Y, Murase R, Ueda N et al. Human scribble accumulates in colorectal neoplasia in association with an altered distribution of beta-catenin. Hum Pathol 2007; 38: 1273–1281.

    Article  CAS  Google Scholar 

  10. Navarro C, Nola S, Audebert S, Santoni MJ, Arsanto JP, Ginestier C et al. Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 2005; 24: 4330–4339.

    Article  CAS  Google Scholar 

  11. Ouyang Z, Zhan W, Dan L . hScrib a human homolog of Drosophila neoplastic tumor suppressor, is involved in the progress of endometrial cancer. Oncol Res 2010; 18: 593–599.

    Article  Google Scholar 

  12. Vaira V, Faversani A, Dohi T, Maggioni M, Nosotti M, Tosi D et al. Aberrant overexpression of the cell polarity module scribble in human cancer. Am J Pathol 2011; 178: 2478–2483.

    Article  CAS  Google Scholar 

  13. Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008; 135: 865–878.

    Article  CAS  Google Scholar 

  14. Pearson HB, Perez-Mancera PA, Dow LE, Ryan A, Tennstedt P, Bogani D et al. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J Clin Invest 2011; 121: 4257–4267.

    Article  CAS  Google Scholar 

  15. Huang L, Muthuswamy SK . Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20: 41–50.

    Article  CAS  Google Scholar 

  16. Muthuswamy SK, Xue B . Cell polarity as a regulator of cancer cell behavior plasticity. Annu Rev Cell Dev Biol 2012; 28: 599–625.

    Article  CAS  Google Scholar 

  17. Martin-Belmonte F, Perez-Moreno M . Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2012; 12: 23–38.

    Article  CAS  Google Scholar 

  18. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE . Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 2008; 27: 6888–6907.

    Article  CAS  Google Scholar 

  19. Elsum I, Yates L, Humbert PO, Richardson HE . The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53: 141–168.

    Article  CAS  Google Scholar 

  20. Brumby AM, Richardson HE . scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. Embo J 2003 3 22: 5769–5779.

    Article  CAS  Google Scholar 

  21. Pagliarini RA, Xu T . A genetic screen in Drosophila for metastatic behavior. Science 2003; 302: 1227–1231.

    Article  CAS  Google Scholar 

  22. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO . Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 2008; 27: 5988–6001.

    Article  CAS  Google Scholar 

  23. DuPage M, Dooley AL, Jacks T . Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 2009; 4: 1064–1072.

    Article  CAS  Google Scholar 

  24. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  25. Fulda S . Tumor resistance to apoptosis. Int J Cancer 2009; 124: 511–515.

    Article  CAS  Google Scholar 

  26. Ramakrishna G, Bialkowska A, Perella C, Birely L, Fornwald LW, Diwan BA et al. Ki-ras and the characteristics of mouse lung tumors. Mol Carcinog 2000; 28: 156–167.

    Article  CAS  Google Scholar 

  27. Zhou Y, Rideout WM 3rd, Zi T, Bressel A, Reddypalli S, Rancourt R et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 2010; 28: 71–78.

    Article  CAS  Google Scholar 

  28. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823–835.

    Article  CAS  Google Scholar 

  29. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. . Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

    Article  CAS  Google Scholar 

  30. Chatterjee S, Seifried L, Feigin ME, Gibbons DL, Scuoppo C, Lin W et al. Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells. PLoS One 2012; 7: e34343.

    Article  CAS  Google Scholar 

  31. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. . Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 2010; 29: 1093–1102.

    Article  CAS  Google Scholar 

  32. Sica A, Allavena P, Mantovani A . Cancer related inflammation: the macrophage connection. Cancer Lett 2008; 267: 204–215.

    Article  CAS  Google Scholar 

  33. Ji H, Houghton AM, Mariani TJ, Perera S, Kim CB, Padera R et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 2006; 25: 2105–2112.

    Article  CAS  Google Scholar 

  34. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM . Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012; 2012: 948098.

    Article  Google Scholar 

  35. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A . Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549–555.

    Article  CAS  Google Scholar 

  36. Martinez FO, Sica A, Mantovani A, Locati M . Macrophage activation and polarization. Front Biosci 2008; 13: 453–461.

    Article  CAS  Google Scholar 

  37. Kass DJ, Yu G, Loh KS, Savir A, Borczuk A, Kahloon R et al. Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. Am J Pathol 2012; 180: 1963–1978.

    Article  CAS  Google Scholar 

  38. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al. Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 2007; 67: 8089–8094.

    Article  CAS  Google Scholar 

  39. Shaw AT, Meissner A, Dowdle JA, Crowley D, Magendantz M, Ouyang C et al. Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 2007; 21: 694–707.

    Article  CAS  Google Scholar 

  40. Cabrita MA, Christofori G . Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 2008; 11: 53–62.

    Article  CAS  Google Scholar 

  41. Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem 2002; 277: 3195–3201.

    Article  CAS  Google Scholar 

  42. Elsum IA, Martin C, Humbert PO . Scribble regulates an EMT-polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126: 3990–3999.

    Article  CAS  Google Scholar 

  43. Nagasaka K, Pim D, Massimi P, Thomas M, Tomaic V, Subbaiah VK et al. The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction. Oncogene 2010; 29: 5311–5321.

    Article  CAS  Google Scholar 

  44. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 17738: 1263–1284.

    Article  Google Scholar 

  45. Karreth FA, Tuveson DA . Modelling oncogenic Ras/Raf signalling in the mouse. Curr Opin Genet Dev 2009; 19: 4–11.

    Article  CAS  Google Scholar 

  46. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  Google Scholar 

  47. Dhillon AS, Hagan S, Rath O, Kolch W . MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279–3290.

    Article  CAS  Google Scholar 

  48. Borrello MG, Degl'Innocenti D, Pierotti MA . Inflammation and cancer: the oncogene-driven connection. Cancer Lett 2008; 267: 262–270.

    Article  CAS  Google Scholar 

  49. Funaba M, Zimmerman CM, Mathews LS . Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002; 277: 41361–41368.

    Article  CAS  Google Scholar 

  50. Sparmann A, Bar-Sagi D . Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6: 447–458.

    Article  CAS  Google Scholar 

  51. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  52. Lewis CE, Pollard JW . Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006; 66: 605–612.

    Article  CAS  Google Scholar 

  53. Cullinane C, Dorow DS, Jackson S, Solomon B, Bogatyreva E, Binns D et al. Differential (18)F-FDG and 3'-deoxy-3'-(18)F-fluorothymidine PET responses to pharmacologic inhibition of the c-MET receptor in preclinical tumor models. J Nucl Med 2011; 52: 1261–1267.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jason Li, Dr David Bimms, Sam Williams, Olivia Cakebread, Tanja Kinwel and the microscopy and histology core at the Peter MacCallum Cancer Centre. We also thank Dr Alison Dooley and Prof Roderick Bronson from the Massachusetts Institute of Technology for their technical advice and to Drs Helena Richardson and Sarah Russell for critical reading of the manuscript. This study was supported by grants from the NHMRC of Australia (no. 1025239 for TJP and RJO; no. 1004434 for IAE and LLY), Movember/PCFA and Richard Pratt Foundation (for HBP). IAE was supported by a Cancer Council Victoria Postgraduate Research Scholarship and POH was supported by a Biomedical Career Development Award from the NHMRC of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P O Humbert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsum, I., Yates, L., Pearson, H. et al. Scrib heterozygosity predisposes to lung cancer and cooperates with KRas hyperactivation to accelerate lung cancer progression in vivo. Oncogene 33, 5523–5533 (2014). https://doi.org/10.1038/onc.2013.498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.498

Keywords

This article is cited by

Search

Quick links