Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting RNA polymerase I to treat MYC-driven cancer

Abstract

The MYC oncoprotein and transcription factor is dysregulated in a majority of human cancers and is considered a major driver of the malignant phenotype. As such, developing drugs for effective inhibition of MYC in a manner selective to malignancies is a ‘holy grail’ of transcription factor-based cancer therapy. Recent advances in elucidating MYC biology in both normal cells and pathological settings were anticipated to bring inhibition of tumorigenic MYC function closer to the clinic. However, while the extensive array of cellular pathways that MYC impacts present numerous fulcrum points on which to leverage MYC’s therapeutic potential, identifying the critical target(s) for MYC-specific cancer therapy has been difficult to achieve. Somewhat unexpectedly, MYC’s fundamental role in regulating the ‘housekeeping’ process of ribosome biogenesis, one of the most ubiquitously required and conserved cell functions, may provide the Achilles' heel for therapeutically targeting MYC-driven tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bywater MJ, Pearson RB, McArthur GA, Hannan RD . Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev 2013; 13: 299–314.

    CAS  Google Scholar 

  2. Dawson MAM, Kouzarides TT . Cancer epigenetics: from mechanism to therapy. Cell 2012; 150: 12–27.

    CAS  PubMed  Google Scholar 

  3. Yan C, Higgins PJ . Drugging the undruggable: transcription therapy for cancer. Biochim Biophys Acta 2013; 1835: 76–85.

    CAS  PubMed  Google Scholar 

  4. Vita M, Henriksson M . The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006; 16: 318–330.

    Article  CAS  PubMed  Google Scholar 

  5. Dang CV, Le A, Gao P . MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479–6483.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Albihn A, Johnsen JI, Henriksson MA . MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107: 163–224.

    CAS  PubMed  Google Scholar 

  7. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Larsson L-G, Henriksson MA . The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316: 1429–1437.

    Article  CAS  PubMed  Google Scholar 

  9. Prochownik EV, Vogt PK . Therapeutic targeting of Myc. Genes Cancer 2010; 1: 650–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomez-Roman N, Grandori C, Eisenman RN, White RJ . Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003; 421: 290–294.

    Article  CAS  PubMed  Google Scholar 

  11. Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 2001; 15: 2069–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 2003; 4: 575–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneider A, Peukert K, Eilers M, Hänel F . Association of Myc with the zinc-finger protein Miz-1 defines a novel pathway for gene regulation by Myc. Curr Top Microbiol Immunol 1997; 224: 137–146.

    CAS  PubMed  Google Scholar 

  14. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J . TGF β influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001; 3: 400–408.

    CAS  PubMed  Google Scholar 

  15. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  PubMed  Google Scholar 

  16. Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    CAS  PubMed  Google Scholar 

  17. Bui TV, Mendell JT . Myc: maestro of microRNAs. Genes Cancer 2010; 1: 568–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Zhao X, Fiskus W, Lin J, Lwin T, Rao R et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell 2012; 22: 506–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Knoepfler PS, Zhang X-Y, Cheng PF, Gafken PR, McMahon SB, Eisenman RN . Myc influences global chromatin structure. EMBO J 2006; 25: 2723–2734.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW . Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 2007; 104: 13028–13033.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotterman R, Jin VX, Krig SR, Lemen JM, Wey A, Farnham PJ et al. N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor. Cancer Res 2008; 68: 9654–9662.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinato F, Cesaroni M, Amati B, Guccione E . Analysis of Myc-induced histone modifications on target chromatin. PLoS One 2008; 3: e3650.

    PubMed  PubMed Central  Google Scholar 

  23. Poortinga G, Wall M, Sanij E, Siwicki K, Ellul J, Brown D et al. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res 2011; 39: 3267–3281.

    CAS  PubMed  Google Scholar 

  24. Yang J, Sung E, Donlin-Asp PG, Corces VG . A subset of Drosophila Myc sites remain associated with mitotic chromosomes colocalized with insulator proteins. Nat Commun 2013; 4: 1464–1464.

    PubMed  Google Scholar 

  25. Eilers M, Eisenman RN . Myc's broad reach. Genes Dev 2008; 22: 2755–2766.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Varlakhanova NV, Knoepfler PS . Acting locally and globally: Myc's ever-expanding roles on chromatin. Cancer Res 2009; 69: 7487–7490.

    CAS  PubMed  Google Scholar 

  27. Dang CV . MYC on the path to cancer. Cell 2012; 149, 22–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012; 22: 51–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wierstra I, Alves J . The c‐myc promoter: still mysterY and challenge. Adv Cancer Res 2008; 99: 113–333.

    PubMed  Google Scholar 

  30. Levens D . You don't muck with MYC. Genes Cancer 2010; 1: 547–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Daneshvar K, Nath S, Khan A, Shover W, Richardson C, Goodliffe JM . MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila. Biol Open 2013; 2: 1–9.

    CAS  PubMed  Google Scholar 

  32. Salghetti SE, Kim SY, Tansey WP . Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Welcker MM, Orian AA, Grim JEJ, Grim JAJ, Eisenman RNR, Clurman BEB . A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol 2004; 14: 6–6.

    Google Scholar 

  36. Moberg KHK, Mukherjee AA, Veraksa AA, Artavanis-Tsakonas SS, Hariharan IKI . The Drosophila F box protein archipelago regulates dMyc protein levels in vivo. Curr Biol 2004; 14: 10–10.

    Google Scholar 

  37. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sears RC . The life cycle of C-myc: from synthesis to degradation. Cell Cycle 2004; 3: 1133–1137.

    CAS  PubMed  Google Scholar 

  39. Amati B, Sanchez-Arévalo Lobo VJ . MYC degradation: deubiquitinating enzymes enter the dance. Nat Cell Biol 2007; 9: 729–731.

    CAS  PubMed  Google Scholar 

  40. Hurley LH, Hoff, Von DD, Siddiqui-Jain A, Yang D . Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin Oncol 2006; 33: 498–512.

    CAS  PubMed  Google Scholar 

  41. Kumar N, Patowary A, Sivasubbu S, Petersen M, Maiti S . Silencing c-MYC expression by targeting quadruplex in P1 promoter using locked nucleic acid trap. Biochemistry 2008; 47: 13179–13188.

    CAS  PubMed  Google Scholar 

  42. Sun D, Hurley LH . The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 2009; 52: 2863–2874.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brooks TA, Hurley LH . Targeting MYC expression through G-quadruplexes. Genes Cancer 2010; 1: 641–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown RV, Danford FL, Gokhale V, Hurley LH, Brooks TA . Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J Biol Chem 2011; 286: 41018–41027.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dai J, Carver M, Hurley LH, Yang D . Solution structure of a 2:1 quindoline–c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J Am Chem Soc 2011; 133: 17673–17680.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sedoris KC, Thomas SD, Clarkson CR, Muench D, Islam A, Singh R et al. Genomic c-Myc quadruplex DNA selectively kills leukemia. Mol Cancer Ther 2012; 11: 66–76.

    CAS  PubMed  Google Scholar 

  47. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2012; 478: 524–528.

    Google Scholar 

  50. Boi M, Bonetti P, Ponzoni M, Tibiletti MG, Stathis A, Cvitkovic E et al. The Brd-inhibitor OTX015 shows pre-clinical activity in anaplastic large T-cell lymphoma (ALCL). ASH Annu Meeting Abstr 2012; 120: 4872.

    Google Scholar 

  51. Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3: 308–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H . Sequence-specific DNA binding by the c-Myc protein. Science 1990; 250: 1149–1151.

    CAS  PubMed  Google Scholar 

  53. Blackwood EM, Eisenman RN . Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251: 1211–1217.

    CAS  PubMed  Google Scholar 

  54. Berg T . Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 2002; 99: 3830–3835.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin X, Giap C, Lazo JS, Prochownik EV . Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22: 6151–6159.

    CAS  PubMed  Google Scholar 

  56. Kiessling A, Sperl B, Hollis A, Eick D, Berg T . Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem Biol 2006; 13: 745–751.

    CAS  PubMed  Google Scholar 

  57. Bonham AJ, Wenta N, Osslund LM, Prussin AJ, Vinkemeier U, Reich NO . STAT1:DNA sequence-dependent binding modulation by phosphorylation, protein:protein interactions and small-molecule inhibition. Nucleic Acids Res 2013; 41: 754–763.

    CAS  PubMed  Google Scholar 

  58. Prochownik EV . c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther 2004; 4: 289–302.

    CAS  PubMed  Google Scholar 

  59. Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther 2007; 6: 2399–2408.

    CAS  PubMed  Google Scholar 

  60. Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ . Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc 2009; 131: 7390–7401.

    CAS  PubMed  Google Scholar 

  61. Mustata G, Follis AV, Hammoudeh DI, Metallo SJ, Wang H, Prochownik EV et al. Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model. J Med Chem ACS Publications 2009; 52: 1247–1250.

    CAS  Google Scholar 

  62. Gomez-Curet I, Perkins RS, Bennett R, Feidler KL, Dunn SP, Krueger LJ . c-Myc inhibition negatively impacts lymphoma growth. J Pediatr Surg 2006; 41: 207–211 discussion 207–11.

    PubMed  Google Scholar 

  63. Huang M-J, Cheng Y-C, Liu C-R, Lin S, Liu HE . A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol 2006; 34: 1480–1489.

    CAS  PubMed  Google Scholar 

  64. Lin C-P, Liu J-D, Chow J-M, Liu C-R, Liu HE . Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anticancer Drugs 2007; 18: 161–170.

    CAS  PubMed  Google Scholar 

  65. Guo J, Parise RA, Joseph E, Egorin MJ, Lazo JS, Prochownik EV et al. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother Pharmacol 2008; 63: 615–625.

    PubMed  PubMed Central  Google Scholar 

  66. Clausen DMD, Guo JJ, Parise RAR, Beumer JHJ, Egorin MJM, Lazo JSJ et al. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J Pharmacol Exp Ther 2010; 335: 715–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 2011; 6: e22284.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L . Endogenous Myc maintains the tumor microenvironment. Genes Dev 2011; 25: 907–916.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Koh JTJ, Zheng J . The new biomimetic chemistry: artificial transcription factors. ACS Chem Biol 2007; 2: 599–601.

    CAS  PubMed  Google Scholar 

  72. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2008; 3: 611–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Laurenti E, Wilson A, Trumpp A . Myc's other life: stem cells and beyond. Curr Opin Cell Biol 2009; 21: 844–854.

    CAS  PubMed  Google Scholar 

  74. Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 2005; 7: 433–444.

    CAS  PubMed  Google Scholar 

  75. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res 2008; 68: 9735–9745.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rounbehler RJ, Li W, Hall MA, Yang C, Fallahi M, Cleveland JL . Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer Res 2009; 69: 547–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD et al. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol 2012; 2: 162.

    PubMed  PubMed Central  Google Scholar 

  78. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    CAS  PubMed  Google Scholar 

  80. Lovén JJ, Zinin NN, Wahlström TT, Müller II, Brodin PP, Fredlund EE et al. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci 2010; 107: 1553–1558.

    PubMed  PubMed Central  Google Scholar 

  81. Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE et al. Disruption of MYC-MiRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 2013; 27: 2341–2350.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Frenzel A, Lovén J, Henriksson MA . Targeting MYC-regulated miRNAs to combat cancer. Genes Cancer 2010; 1: 660–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN et al. Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 2012; 109: 9545–9550.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Leung JY, Andrechek ER, Cardiff RD, Nevins JR . Heterogeneity in MYC-induced mammary tumors contributes to escape from oncogene dependence. Oncogene 2012; 31: 2545–2554.

    CAS  PubMed  Google Scholar 

  85. Levens D . Disentangling the MYC web. Proc Natl Acad Sci USA 2002; 99: 5757–5759.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lawlor ER, Soucek L, Brown-Swigart L, Shchors K, Bialucha CU, Evan GI . Reversible kinetic analysis of Myc targets in vivo provides novel insights into Myc-mediated tumorigenesis. Cancer Res 2006; 66: 4591–4601.

    CAS  PubMed  Google Scholar 

  87. Dang CV . Enigmatic MYC conducts an unfolding systems biology symphony. Genes Cancer 2010; 1: 526–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 2003; 100: 8164–8169.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Marinkovic D, Marinkovic T, Kokai E, Barth T, Moller P, Wirth T . Identification of novel Myc target genes with a potential role in lymphomagenesis. Nucleic Acids Res 2004; 32: 5368–5378.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schlosser I, Hölzel M, Hoffmann R, Burtscher H, Kohlhuber F, Schuhmacher M et al. Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene 2004; 24: 520–524.

    Google Scholar 

  91. Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 2006; 103: 17834–17839.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu C-H, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW . Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 2008; 4: e1000090.

    PubMed  PubMed Central  Google Scholar 

  93. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Perna D, Fagà G, Verrecchia A, Gorski MM, Barozzi I, Narang V et al. Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene 2012; 31: 1695–1709.

    CAS  PubMed  Google Scholar 

  95. Ji H, Wu G, Zhan X, Nolan A, Koh C, De Marzo A et al. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One 2011; 6: e26057.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Seitz V, Butzhammer P, Hirsch B, Hecht J, Gütgemann I, Ehlers A et al. Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One 2011; 6: e26837.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee B-K, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res 2012; 22: 9–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dai M-S, Lu H . Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 2008; 105: 670–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grandori C, Cowley SM, James LP, Eisenman RN . The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2000; 16: 653–699.

    CAS  PubMed  Google Scholar 

  100. Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA 2000; 97: 3260–3265.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17: 1115–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 2003; 17: 1101–1114.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Orian A, Grewal SS, Knoepfler PS, Edgar BA, Parkhurst SM, Eisenman RN . Genomic binding and transcriptional regulation by the Drosophila Myc and Mnt transcription factors. Cold Spring Harb Symp Quant Biol 2005; 70: 299–307.

    CAS  PubMed  Google Scholar 

  104. Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA . Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 2005; 7: 295–302.

    CAS  PubMed  Google Scholar 

  105. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151: 68–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Littlewood TD, Kreuzaler P, Evan GI . All things to all people. Cell 2012; 151: 11–13.

    CAS  PubMed  Google Scholar 

  108. Shaffer AL, Wright G, Yang L, Powell J, Ngo V, Lamy L et al. A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev 2006; 210: 67–85.

    CAS  PubMed  Google Scholar 

  109. Boon K, Caron HN, van Asperen R, Valentijn L, Hermus MC, van Sluis P et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J 2001; 20: 1383–1393.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. O'Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK et al. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 2003; 278: 12563–12573.

    CAS  PubMed  Google Scholar 

  111. Brown SJ, Cole MD, Erives AJ . Evolution of the holozoan ribosome biogenesis regulon. BMC Genomics 2008; 9: 442.

    PubMed  PubMed Central  Google Scholar 

  112. Bouchard C, Staller P, Eilers M . Control of cell proliferation by Myc. Trends Cell Biol 1998; 8: 202–206.

    CAS  PubMed  Google Scholar 

  113. Schmidt EV . The role of c-myc in cellular growth control. Oncogene 1999; 18: 2988–2996.

    CAS  PubMed  Google Scholar 

  114. Iritani BM, Eisenman RN . c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 1999; 96: 13180–13185.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Trumpp A, Refaeli Y, Oskarsson T, Gasser S, Murphy M, Martin GR et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 2001; 414: 768–773.

    CAS  PubMed  Google Scholar 

  116. Schmidt EV . The role of c-myc in regulation of translation initiation. Oncogene 2004; 23: 3217–3221.

    CAS  PubMed  Google Scholar 

  117. Dang CV . c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19: 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jamerson MH, Johnson MD, Dickson RB . Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2004; 9: 27–37.

    PubMed  Google Scholar 

  119. Lee LA, Dang CV . Myc target transcriptomes. Curr Top Microbiol Immunol 2006; 302: 145–167.

    CAS  PubMed  Google Scholar 

  120. Gallant P, Shiio Y, Cheng PF, Parkhurst SM, Eisenman RN . Myc and Max homologs in Drosophila. Science 1996; 274: 1523–1527.

    CAS  PubMed  Google Scholar 

  121. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P . Drosophila Myc regulates cellular growth during development. Cell 1999; 98: 779–790.

    CAS  PubMed  Google Scholar 

  122. Pierce SB, Yost C, Britton JS, Loo LWM, Flynn EM, Edgar BA et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 2004; 131: 2317–2327.

    CAS  PubMed  Google Scholar 

  123. Schreiber-Agus N, Stein D, Chen K, Goltz JS, Stevens L, DePinho RA . Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc Natl Acad Sci USA 1997; 94: 1235–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Benassayag C, Montero L, Colombié N, Gallant P, Cribbs D, Morello D . Human c-Myc isoforms differentially regulate cell growth and apoptosis in Drosophila melanogaster. Mol Cell Biol 2005; 25: 9897–9909.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Oskarsson T, Trumpp A . The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 2005; 7: 215–217.

    CAS  PubMed  Google Scholar 

  126. Gomez-Roman N, Felton-Edkins ZA, Kenneth NS, Goodfellow SJ, Athineos D, Zhang J et al. Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem Soc Symp 2006; 73: 141–154.

    CAS  Google Scholar 

  127. White RJ . RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 2005; 6: 69–78.

    CAS  PubMed  Google Scholar 

  128. Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J 2004; 23: 3325–3335.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Schlosser I, Holzel M, Murnseer M, Burtscher H, Weidle UH, Eick D . A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 2003; 31: 6148–6156.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 2005; 7: 311–318.

    CAS  PubMed  Google Scholar 

  131. Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 2005; 7: 303–310.

    CAS  PubMed  Google Scholar 

  132. Shiue CN, Berkson RG, Wright AP . c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 2009; 28: 1833–1842.

    CAS  PubMed  Google Scholar 

  133. Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J . Chromatin States at ribosomal DNA loci. Biochim Biophys Acta 2013; 1829: 405–417.

    CAS  PubMed  Google Scholar 

  134. Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J et al. UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 2008; 183: 1259–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sanij E, Hannan RD . The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics 2009; 4: 374–382.

    CAS  PubMed  Google Scholar 

  136. Grummt I . Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 2003; 17: 1691–1702.

    CAS  PubMed  Google Scholar 

  137. Russell JJ, Zomerdijk JCBMJ . The RNA polymerase I transcription machinery. Biochem Soc Symp 2005; 73: 203–216.

    Google Scholar 

  138. Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G . Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes. EMBO J 2008; 27: 1255–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB et al. c-Myc regulates transcriptional pause release. Cell 2010; 141: 432–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Eberhardy SR, Farnham PJ . c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 2001; 276: 48562–48571.

    CAS  PubMed  Google Scholar 

  141. Eberhardy SR . Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 2002; 277: 40156–40162.

    CAS  PubMed  Google Scholar 

  142. Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011; 4 ra56, .

    PubMed  Google Scholar 

  143. Ruggero D, Pandolfi PP . Does the ribosome translate cancer? Nat Rev Cancer 2003; 3: 179–192.

    CAS  PubMed  Google Scholar 

  144. Meyuhas O . Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 2000; 267: 6321–6330.

    CAS  PubMed  Google Scholar 

  145. Hornstein E, Tang H, Meyuhas O . Mitogenic and Nutritional Signals Are Transduced into Translational Efficiency of TOP mRNAs. Cold Spring Harb Symp Quant Biol 2001; 66: 477–484.

    CAS  PubMed  Google Scholar 

  146. Hellen CU, Sarnow P . Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 2001; 15: 1593–1612.

    CAS  PubMed  Google Scholar 

  147. Kong J, Lasko P . Translational control in cellular and developmental processes. Nat Rev Genet 2012; 13: 383–394.

    CAS  PubMed  Google Scholar 

  148. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008; 456: 971–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–538.

    CAS  PubMed  Google Scholar 

  150. Langdon WY, Harris AW, Cory S, Adams JM . The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 1986; 47: 11–18.

    CAS  PubMed  Google Scholar 

  151. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM . The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 1988; 167: 353–371.

    CAS  PubMed  Google Scholar 

  152. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI . The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007; 8: 574–585.

    CAS  PubMed  Google Scholar 

  153. Boulon S, Westman BJ, Hutten S, Boisvert F-M, Lamond AI . The nucleolus under stress. Mol Cell 2010; 40: 216–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Hein N, Hannan KM, George AJ, Sanij E, Hannan RD . The nucleolus: an emerging target for cancer therapy. Trends Mol Med 2013; 19: 643–654.

    CAS  PubMed  Google Scholar 

  155. Fontoura BM, Sorokina EA, David E, Carroll RB . p53 is covalently linked to 5.8 S rRNA. Mol cell Biol 1992; 12: 5145–5151.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Deisenroth C, Zhang Y . Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010; 29: 4253–4260.

    CAS  PubMed  Google Scholar 

  158. Lohrum MAE, Ludwig RL, Kubbutat MHG, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3: 577–587.

    CAS  PubMed  Google Scholar 

  159. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bhat KP, Itahana K, Jin A, Zhang Y . Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 2004; 23: 2402–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Dai M-S, Lu H . Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004; 279: 44475–44482.

    CAS  PubMed  Google Scholar 

  162. Li M, Gu W . A critical role for noncoding 5 S rRNA in regulating Mdmx stability. Mol Cell 2011; 43: 1023–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fumagalli SS, Ivanenkov VVV, Teng TT, Thomas GG . Suprainduction of p53 by disruption of 40 S and 60 S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012; 26: 1028–1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 2009; 35: 316–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER . Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007; 26: 5029–5037.

    CAS  PubMed  Google Scholar 

  166. Takagi M, Absalon MJ, McLure KG, Kastan MB . Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123: 49–63.

    CAS  PubMed  Google Scholar 

  167. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M . Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 2008; 32: 180–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011; 17: 944–951.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP . Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 2009; 10: 1132–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Marine J-CW, Dyer MA, Jochemsen AG . MDMX: from bench to bedside. J Cell Sci 2007; 120: 371–378.

    CAS  PubMed  Google Scholar 

  171. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. Absence of nucleolar disruption after impairment of 40 S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 2009; 11: 501–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Chakraborty A, Uechi T, Kenmochi N . Guarding the ‘translation apparatus’: defective ribosome biogenesis and the p53 signaling pathway. Wiley Interdiscip Rev RNA 2011; 2: 507–522.

    CAS  PubMed  Google Scholar 

  173. Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T et al. A new PICTure of nucleolar stress. Cancer Sci 2012; 103: 632–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  175. Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 2011; 71: 1418–1430.

    CAS  PubMed  Google Scholar 

  176. Ruggero D . Revisiting the nucleolus: from marker to dynamic integrator of cancer signaling. Sci Signal 2012; 5: pe38.

    PubMed  PubMed Central  Google Scholar 

  177. Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 2010; 285: 12416–12425.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Drygin D, Rice WG, Grummt I . The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010; 50: 131–156.

    CAS  PubMed  Google Scholar 

  179. Hannan RD, Drygin D, Pearson RB . Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opin Ther Targets 2013; 17: 873–878.

    CAS  PubMed  Google Scholar 

  180. Drygin D, O'Brien SE, Hannan RD, McArthur GA, Hoff Von DD . Targeting the nucleolus for cancer-specific activation of p53. Drug Discov Today 2013. S1359–S6446.

  181. van Riggelen J, Yetil A, Felsher DW . MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Rev Cancer 2010; 10: 301–309.

    CAS  Google Scholar 

  182. Wall M, Poortinga G, Stanley KL, Lindemann RK, Bots M, Chan CJ et al. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov 2013; 3: 82–95.

    CAS  PubMed  Google Scholar 

  183. Pourdehnad M, Truitt ML, Siddiqi IN, Ducker GS, Shokat KM, Ruggero D . Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA 2013; 110: 11988–11993.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Hannan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poortinga, G., Quinn, L. & Hannan, R. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 34, 403–412 (2015). https://doi.org/10.1038/onc.2014.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.13

This article is cited by

Search

Quick links