Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity

A Corrigendum to this article was published on 05 March 2015

This article has been updated

Abstract

The proto-oncogene c-Jun is a component of activator protein-1 (AP-1) transcription factor complexes that regulates processes essential for embryonic development, tissue homeostasis and malignant transformation. Induction of gene expression by c-Jun involves stimulation of its transactivation ability and upregulation of DNA binding capacity. While it is well established that the former requires JNK-mediated phosphorylation of S63/S73, the mechanism(s) through which binding of c-Jun to its endogenous target genes is regulated remains poorly characterized. Here we show that interaction of c-Jun with chromatin is positively regulated by protein phosphatase 2A (PP2A) complexes targeted to c-Jun by the PR55α regulatory subunit. PR55α-PP2A specifically dephosphorylates T239 of c-Jun, promoting its binding to genes regulating tumour cell migration and invasion. PR55α-PP2A also enhanced transcription of these genes, without affecting phosphorylation of c-Jun on S63. These findings suggest a critical role for interplay between JNK and PP2A pathways determining the functional activity of c-Jun/AP-1 in tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

  • 05 March 2015

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

References

  1. Hess J, Angel P, Schorpp-Kistner M . AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 2004; 117: 5965–5973.

    Article  CAS  PubMed  Google Scholar 

  2. Mechta F, Lallemand D, Pfarr CM, Yaniv M . Transformation by ras modifies AP1 composition and activity. Oncogene 1997; 14: 837–847.

    Article  CAS  PubMed  Google Scholar 

  3. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  4. Young MR, Colburn NH . Fra-1 a target for cancer prevention or intervention. Gene 2006; 379: 1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Vial E, Sahai E, Marshall CJ . ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 2003; 4: 67–79.

    Article  CAS  PubMed  Google Scholar 

  6. Jochum W, Passegue E, Wagner EF . AP-1 in mouse development and tumorigenesis. Oncogene 2001; 20: 2401–2412.

    Article  CAS  PubMed  Google Scholar 

  7. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  8. Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, Wittner BS et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA 2013; 110: 5139–5144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belguise K, Kersual N, Galtier F, Chalbos D . FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 2005; 24: 1434–1444.

    Article  CAS  PubMed  Google Scholar 

  10. Mechta-Grigoriou F, Gerald D, Yaniv M . The mammalian Jun proteins: redundancy and specificity. Oncogene 2001; 20: 2378–2389.

    Article  CAS  PubMed  Google Scholar 

  11. Raivich G, Behrens A . Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol 2006; 78: 347–363.

    Article  CAS  PubMed  Google Scholar 

  12. Zenz R, Wagner EF . Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 2006; 38: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  13. Schonthaler HB, Guinea-Viniegra J, Wagner EF . Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis 2011; 70: i109–i112.

    Article  CAS  PubMed  Google Scholar 

  14. Hartl M, Bader AG, Bister K . Molecular targets of the oncogenic transcription factor jun. Curr Cancer Drug Targets 2003; 3: 41–55.

    Article  CAS  PubMed  Google Scholar 

  15. Nateri AS, Spencer-Dene B, Behrens A . Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 2005; 437: 281–285.

    Article  CAS  PubMed  Google Scholar 

  16. Aguilera C, Nakagawa K, Sancho R, Chakraborty A, Hendrich B, Behrens A . c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature 2011; 469: 231–235.

    Article  CAS  PubMed  Google Scholar 

  17. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64: 573–584.

    Article  CAS  PubMed  Google Scholar 

  18. Morton S, Davis RJ, McLaren A, Cohen P . A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J 2003; 22: 3876–3886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taira N, Mimoto R, Kurata M, Yamaguchi T, Kitagawa M, Miki Y et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J Clin Invest 2012; 122: 859–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou SY, Baichwal V, Ferrell JE Jr . Inhibition of c-Jun DNA binding by mitogen-activated protein kinase. Mol Biol Cell 1992; 3: 1117–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr . The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8: 25–33.

    Article  CAS  PubMed  Google Scholar 

  22. Milde-Langosch K . The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 2005; 41: 2449–2461.

    Article  CAS  PubMed  Google Scholar 

  23. Adiseshaiah P, Lindner DJ, Kalvakolanu DV, Reddy SP . FRA-1 proto-oncogene induces lung epithelial cell invasion and anchorage-independent growth in vitro, but is insufficient to promote tumor growth in vivo. Cancer Res 2007; 67: 6204–6211.

    Article  CAS  PubMed  Google Scholar 

  24. Pakay JL, Diesch J, Gilan O, Yip YY, Sayan E, Kolch W et al. A 19S proteasomal subunit cooperates with an ERK–MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene 2012; 31: 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  25. Virshup DM, Shenolikar S . From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 2009; 33: 537–545.

    Article  CAS  PubMed  Google Scholar 

  26. Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A . Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 2008; 122: 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  27. Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, Kulbicki K et al. Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2012; 31: 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  28. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 2010; 38: 114–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alberts AS, Deng T, Lin A, Meinkoth JL, Schonthal A, Mumby MC et al. Protein phosphatase 2A potentiates activity of promoters containing AP-1-binding elements. Mol Cell Biol 1993; 13: 2104–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Murrani SW, Woodgett JR, Damuni Z . Expression of I2PP2A, an inhibitor of protein phosphatase 2A, induces c-Jun and AP-1 activity. Biochem J 1999; 341: 293–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen BK, Huang CC, Chang WC, Chen YJ, Kikkawa U, Nakahama K et al. PP2B-mediated dephosphorylation of c-Jun C terminus regulates phorbol ester-induced c-Jun/Sp1 interaction in A431 cells. Mol Biol Cell 2007; 18: 1118–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang CC, Wang JM, Kikkawa U, Mukai H, Shen MR, Morita I et al. Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation. Oncogene 2008; 27: 2422–2429.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs SY, Dolan L, Davis RJ, Ronai Z . Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 1996; 13: 1531–1535.

    CAS  PubMed  Google Scholar 

  34. Francia G, Poulsom R, Hanby AM, Mitchell SD, Williams G, McKee P et al. Identification by differential display of a protein phosphatase-2A regulatory subunit preferentially expressed in malignant melanoma cells. Int J Cancer 1999; 82: 709–713.

    Article  CAS  PubMed  Google Scholar 

  35. Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H et al. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 2000; 19: 562–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang W, Yang J, Liu Y, Chen X, Yu T, Jia J et al. PR55 alpha, a regulatory subunit of PP2A, specifically regulates PP2A-mediated beta-catenin dephosphorylation. J Biol Chem 2009; 284: 22649–22656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 2004; 5: 127–136.

    Article  CAS  PubMed  Google Scholar 

  38. Janssens V, Goris J, Van Hoof C . PP2A: the expected tumor suppressor. Curr Opin Genet Dev 2005; 15: 34–41.

    Article  CAS  PubMed  Google Scholar 

  39. Mumby M . PP2A: unveiling a reluctant tumor suppressor. Cell 2007; 130: 21–24.

    Article  CAS  PubMed  Google Scholar 

  40. Tan J, Lee PL, Li Z, Jiang X, Lim YC, Hooi SC et al. B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 2010; 18: 459–471.

    Article  CAS  PubMed  Google Scholar 

  41. Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M . Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008; 135: 2927–2937.

    Article  CAS  PubMed  Google Scholar 

  42. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 2005; 179: 56–65.

    Article  CAS  PubMed  Google Scholar 

  43. Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R . Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 2000; 148: 173–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A . Beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA 2011; 108: 19204–19209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adams DG, Coffee RL Jr., Zhang H, Pelech S, Strack S, Wadzinski BE . Positive regulation of Raf1-MEK1/2-ERK1/2 signaling by protein serine/threonine phosphatase 2A holoenzymes. J Biol Chem 2005; 280: 42644–42654.

    Article  CAS  PubMed  Google Scholar 

  46. Chen W, Arroyo JD, Timmons JC, Possemato R, Hahn WC . Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res 2005; 65: 8183–8192.

    Article  CAS  PubMed  Google Scholar 

  47. Bryant JC, Westphal RS, Wadzinski BE . Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J 1999; 339: 241–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs David Gillespie, Eisuke Nishida, Chunming Liu, Kanaga Sabapathy and William Kaelin for providing reagents used in this study. This work was supported by project grants (to ASD and RDH) and Research Fellowships (to RDH, RBP and JMM) from the National Health and Medical Research Council of Australia and the Cancer Institute NSW (to NMV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Dhillon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilan, O., Diesch, J., Amalia, M. et al. PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene 34, 1333–1339 (2015). https://doi.org/10.1038/onc.2014.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.26

This article is cited by

Search

Quick links