Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Single-cell gene expression signatures reveal melanoma cell heterogeneity

Abstract

It is well established that tumours are not homogenous, but comprise cells with differing invasive, proliferative and tumour-initiating potential. A major challenge in cancer research is therefore to develop methods to characterize cell heterogeneity. In melanoma, proliferative and invasive cells are characterized by distinct gene expression profiles and accumulating evidence suggests that cells can alternate between these states through a process called phenotype switching. We have used microfluidic technology to isolate single melanoma cells grown in vitro as monolayers or melanospheres or in vivo as xenografted tumours and analyse the expression profiles of 114 genes that discriminate the proliferative and invasive states by quantitative PCR. Single-cell analysis accurately recapitulates the specific gene expression programmes of melanoma cell lines and defines subpopulations with distinct expression profiles. Cell heterogeneity is augmented when cells are grown as spheres and as xenografted tumours. Correlative analysis identifies gene-regulatory networks and changes in gene expression under different growth conditions. In tumours, subpopulations of cells that express specific invasion and drug resistance markers can be identified amongst which is the pluripotency factor POUF51 (OCT4) whose expression correlates with the tumorigenic potential. We therefore show that single-cell analysis can be used to define and quantify tumour heterogeneity based on detection of cells with specific gene expression profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meacham CE, Morrison SJ . Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501: 328–337.

    Article  CAS  Google Scholar 

  2. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  Google Scholar 

  3. Somasundaram R, Villanueva J, Herlyn M . Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv Pharmacol 2012; 65: 335–359.

    Article  CAS  Google Scholar 

  4. Hoek KS, Goding CR . Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res 2010; 23: 746–759.

    Article  CAS  Google Scholar 

  5. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 2010; 18: 510–523.

    Article  CAS  Google Scholar 

  6. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 2008; 68: 650–656.

    Article  CAS  Google Scholar 

  7. Widmer DS, Cheng PF, Eichhoff OM, Belloni BC, Zipser MC, Schlegel NC et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res 2012; 25: 343–353.

    Article  CAS  Google Scholar 

  8. Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res 2008; 68: 7788–7794.

    Article  CAS  Google Scholar 

  9. Javelaud D, Alexaki VI, Pierrat MJ, Hoek KS, Dennler S, Van Kempen L et al. GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res 2011; 24: 932–943.

    Article  CAS  Google Scholar 

  10. Cheli Y, Guiliano S, Botton T, Rocchi S, Hofman V, Hofman P et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 2011; 30: 2307–2318.

    Article  CAS  Google Scholar 

  11. Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget 2013; 4: 2212–2224.

    Article  Google Scholar 

  12. Chen KG, Valencia JC, Gillet JP, Hearing VJ, Gottesman MM . Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res 2009; 22: 740–749.

    Article  CAS  Google Scholar 

  13. Perego M, Tortoreto M, Tragni G, Mariani L, Deho P, Carbone A et al. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol 2010; 130: 1877–1886.

    Article  CAS  Google Scholar 

  14. Thurber AE, Douglas G, Sturm EC, Zabierowski SE, Smit DJ, Ramakrishnan SN et al. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway. Oncogene 2011; 30: 3036–3048.

    Article  CAS  Google Scholar 

  15. Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011; 30: 2319–2332.

    Article  CAS  Google Scholar 

  16. Kobi D, Steunou AL, Dembele D, Legras S, Larue L, Nieto L et al. Genome-wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene. Pigment Cell Melanoma Res 2010; 23: 404–418.

    Article  CAS  Google Scholar 

  17. Thies A, Moll I, Berger J, Wagener C, Brummer J, Schulze HJ et al. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol 2002; 20: 2530–2536.

    Article  CAS  Google Scholar 

  18. Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013; 24: 466–480.

    Article  CAS  Google Scholar 

  19. Chiaverini C, Beuret L, Flori E, Busca R, Abbe P, Bille K et al. Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J Biol Chem 2008; 283: 12635–12642.

    Article  CAS  Google Scholar 

  20. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29: 1120–1127.

    Article  CAS  Google Scholar 

  21. Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S et al. Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 2012; 61: 1005–1018.

    Article  CAS  Google Scholar 

  22. Perez-Lorenzo R, Gill KZ, Shen CH, Zhao FX, Zheng B, Schulze HJ et al. A tumor suppressor function for the lipid phosphatase INPP4B in melanocytic neoplasms. J Invest Dermatol 2013; 134: 1359–1368.

    Article  Google Scholar 

  23. Liu S, Ren S, Howell P, Fodstad O, Riker AI . Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res 2008; 21: 545–558.

    Article  CAS  Google Scholar 

  24. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    Article  CAS  Google Scholar 

  25. Haass NK, Beaumont KA, Hill DS, Anfosso A, Mrass P, Munoz MA et al. Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment Cell Melanoma Res (e-pub ahead of print 5 June 2014; doi:10.1111/pcmr.12274).

    Article  CAS  Google Scholar 

  26. McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 2013; 29: 461–467.

    Article  CAS  Google Scholar 

  27. Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C et al. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 2013; 20: 339–346.

    Article  CAS  Google Scholar 

  28. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  Google Scholar 

  29. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  30. Anders S, Huber W . Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.

    Article  CAS  Google Scholar 

  31. Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 2014; 21: 1250–1261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D Dembélé for help with data analysis, all the staff of the IGBMC common facilities, as well as F Kardouz and the staff of the Strasbourg Hospital Dermatology Clinic, This work was supported by institutional grants from the Centre National de la Recherche Scientifique, the Institut National de Sante et de la Recherche Médicale, the Université de Strasbourg, the Association pour la Recherche contre le Cancer, the Ligue Nationale contre le Cancer, the Institut National du Cancer PAIR-melanoma grant, the ANR-10-LABX-0030-INRT French state fund through the Agence Nationale de la Recherche under the frame programme Investissements d’Avenir labelled ANR-10-IDEX-0002-02. The IGBMC high throughput sequencing facility is a member of the ‘France Génomique’ consortium (ANR10-INBS-09-08). ID is an ‘équipe labellisée’ of the Ligue Nationale contre le Cancer. ME was supported by a fellowship from the Ligue Nationale contre le Cancer.

Author Contributions

ID, ME and CK designed the experiments. ME, CK, CT-C developed methodologies and performed the experiments. CK and ME performed the bioinformatics and computational analyses. DL provided the human melanoma samples and analysed the images. ID, ME and CK wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Davidson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennen, M., Keime, C., Kobi, D. et al. Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene 34, 3251–3263 (2015). https://doi.org/10.1038/onc.2014.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.262

This article is cited by

Search

Quick links