Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications

Subjects

Abstract

A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22: 425–437.

    Article  CAS  PubMed  Google Scholar 

  2. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gan HK, Cvrljevic AN, Johns TG . The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 2013; 280: 5350–5370.

    Article  CAS  PubMed  Google Scholar 

  4. Ymer SI, Greenall SA, Cvrljevic A, Cao DX, Donoghue JF, Epa VC et al. Glioma specific extracellular missense mutations in the first cysteine rich region of epidermal growth factor receptor (EGFR) initiate ligand independent activation. Cancers 2011; 3: 2032–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Vecchio CA, Giacomini CP, Vogel H, Jensen KC, Florio T, Merlo A et al. EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 2013; 32: 2670–2681.

    Article  CAS  PubMed  Google Scholar 

  6. Gan HK, Kaye AH, Luwor RB . The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 2009; 16: 748–754.

    Article  CAS  PubMed  Google Scholar 

  7. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S et al. EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 2009; 69: 4252–4259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ . Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 1998; 95: 5724–5729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  PubMed  Google Scholar 

  10. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 2007; 104: 12867–12872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pillay V, Allaf L, Wilding AL, Donoghue JF, Court NW, Greenall SA et al. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia 2009; 11: 448–458, 442–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I et al. De-Repression of PDGFRβ Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients. Cancer Discovery 2013; 3: 534–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL et al. Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov 2012; 2: 458–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Street I, de Sylva M, Lackovic K, Ganame D, Holloway G, Anderson R et al. Abstract LB-308: combination of CTx-0294945 a highly selective inhibitor of focal adhesion kinase with bevacizumab in pre-clinical models of breast cancer. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 31 March–4 April 2012; AACR: Chicago, IL; Philadelphia, PA; Cancer Res 2012, p 72.

    Google Scholar 

  15. Liu M, Yang Y, Wang C, Sun L, Mei C, Yao W et al. The effect of epidermal growth factor receptor variant III on glioma cell migration by stimulating ERK phosphorylation through the focal adhesion kinase signaling pathway. Archiv Biochem Biophys 2010; 502: 89–95.

    Article  CAS  Google Scholar 

  16. Martinvalet D, Zhu P, Lieberman J, Granzyme A . Induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 2005; 22: 355–370.

    Article  CAS  PubMed  Google Scholar 

  17. Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 2006; 66: 8715–8721.

    Article  CAS  PubMed  Google Scholar 

  18. Riemenschneider MJ, Mueller W, Betensky RA, Mohapatra G, Louis DN . In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol 2005; 167: 1379–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. MicroRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  20. Kong X, Li G, Yuan Y, He Y, Wu X, Zhang W et al. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS One 2012; 7: e41523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding L, Sun X, You Y, Liu N, Fu Z . Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in human gliomas is associated with unfavorable overall survival. Transl Res 2010; 156: 45–52.

    Article  CAS  PubMed  Google Scholar 

  22. Chen TH, Chan PC, Chen CL, Chen HC . Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition. Oncogene 2011; 30: 153–166.

    Article  PubMed  Google Scholar 

  23. Meyer AS, Miller MA, Gertler FB, Lauffenburger DA . The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal 2013; 6: ra66.

    PubMed  PubMed Central  Google Scholar 

  24. Guo A, Villén J, Kornhauser J, Lee KA, Stokes MP, Rikova K et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 2008; 105: 692–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grandal MV, Zandi R, Pedersen MW, Willumsen BM, van Deurs B, Poulsen HS . EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 2007; 28: 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  26. Fan QW, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 2013; 24: 438–449.

    Article  CAS  PubMed  Google Scholar 

  27. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  CAS  PubMed  Google Scholar 

  28. Wen PY, Chang SM, Lamborn KR, Kuhn JG, Norden AD, Cloughesy TF et al. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology 2014; 16: 567–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol cell 2001; 8: 995–1004.

    Article  CAS  PubMed  Google Scholar 

  30. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M . A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 2004; 279: 29565–29571.

    Article  CAS  PubMed  Google Scholar 

  31. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010; 17: 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu T-J, LaFortune T, Honda T, Ohmori O, Hatakeyama S, Meyer T et al. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol Cancer Ther 2007; 6: 1357–1367.

    Article  CAS  PubMed  Google Scholar 

  33. Greenall SA, Gherardi E, Liu Z, Donoghue JF, Vitali AA, Li Q et al. Non-agonistic bivalent antibodies that promote c-MET degradation and inhibit tumor growth and others specific for tumor related c-MET. PLoS One 2012; 7: e34658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johns TG, Stockert E, Ritter G, Jungbluth AA, Huang HJ, Cavenee WK et al. Novel monoclonal antibody specific for the de2-7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene. Int J Cancer 2002; 98: 398–408.

    Article  CAS  PubMed  Google Scholar 

  35. Johns T, Perera RM, Vernes SC, Vitali AA, Cao DX, Cavenee WK et al. The efficacy of epidermal growth factor receptor-specific antibodies against glioma xenografts is influenced by receptor levels, activation status, and heterodimerization. Clin Cancer Res 2007; 13: 1911–1925.

    Article  CAS  PubMed  Google Scholar 

  36. Donoghue JF, Bogler O, Johns TG . A simple guide screw method for intracranial xenograft studies in mice. J Vis Exp 2011; 55: e3157.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the facilities and scientific and technical assistance of the Histology Facility, Microimaging facility and Monash Animal Services, at MIMR-PHI Institute of Medical Research. We thank Dr D Dadley-Moore for editing the manuscript. SAG is funded by a Commonwealth Scientific and Industrial Research Organisation (CSIRO) OCE Postdoctoral Fellowship. JFD is funded by a Cure Cancer Australia Foundation postdoctoral fellowship and a Victorian Cancer Agency Early Career Seed Grant (ECSG1108). TGJ is funded by National Health and Medical Research Council Project Grants 1028552 and 1012020, the Victorian Government’s Operational and Infrastructure Support Program and the Cure Brain Cancer Foundation. This work was supported by the CRC for Cancer Therapeutics, an initiative of the Australian Government. Rilotumumab and motesanib must be obtained through an MTA. Rilotumumab, panitumumab and motesanib were provided by Amgen (rilotumumab and motesanib through an MTA); and dacomitinib was provided by Pfizer.

Author Contributions

SAG, JFD, TEA and TGJ conceived the idea and designed the experiments; SAG, JFD, MVS, VD and SB performed the experiments; SAG, JFD, MVS, VD, MD, IS, TEA and TGJ analyzed and interpreted the data; SAG, JFD, MD, IS, TEA and TGJ wrote and revised the manuscript; MD and IS provided reagents; and TEA and TGJ supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T G Johns.

Ethics declarations

Competing interests

MD and IS are inventors listed on patent applications for FAK inhibitors. TGJ has received project funding from Amgen.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenall, S., Donoghue, J., Van Sinderen, M. et al. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene 34, 5277–5287 (2015). https://doi.org/10.1038/onc.2014.448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.448

This article is cited by

Search

Quick links