Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A CCL8 gradient drives breast cancer cell dissemination

Abstract

The migration of cancer cells towards gradients of chemoattractive factors represents a potential, yet elusive, mechanism that may contribute to cancer cell dissemination. Here we provide evidence for the maintenance of a gradient of increasing CCL8 concentration between the epithelium, the stroma and the periphery that is instrumental for breast cancer cells’ dissemination. In response to signals elicited by the neoplastic epithelium, CCL8 production is enhanced in stromal fibroblasts at the tumor margins and in tissues at which breast cancer cells tend to metastasize such as the lungs and the brain. Manipulation of CCL8 activity influences the histology of the tumors and promotes major steps of the metastatic process such as invasion to adjacent stroma, intravasation and ultimately extravasation and seeding. These findings exemplify how gradients of chemoattractive factors such as CCL8, drive metastasis and suggest that interference with their operation may provide means for breast cancer management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vanharanta S, Massague J . Origins of metastatic traits. Cancer Cell 2013; 24: 410–421.

    Article  CAS  Google Scholar 

  2. Chatzistamou I, Dioufa N, Trimis G, Sklavounou A, Kittas C, Kiaris H et al. p21/waf1 and smooth-muscle actin alpha expression in stromal fibroblasts of oral cancers. Cell Oncol (Dordr) 2011; 34: 483–488.

    Article  CAS  Google Scholar 

  3. Trimis G, Chatzistamou I, Politi K, Kiaris H, Papavassiliou AG . Expression of p21waf1/Cip1 in stromal fibroblasts of primary breast tumors. Hum Mol Genet 2008; 17: 3596–3600.

    Article  CAS  Google Scholar 

  4. Lu H, Clauser KR, Tam WL, Frose J, Ye X, Eaton EN et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014; 16: 1105–1117.

    Article  CAS  Google Scholar 

  5. Su S, Liu Q, Chen J, Chen F, He C, Huang D et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 2014; 25: 605–620.

    Article  Google Scholar 

  6. Condeelis J, Pollard JW . Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124: 263–266.

    Article  CAS  Google Scholar 

  7. Allavena P, Sica A, Solinas G, Porta C, Mantovani A . The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66: 1–9.

    Article  Google Scholar 

  8. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  Google Scholar 

  9. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  Google Scholar 

  10. Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N et al. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J Exp Med 2013; 210: 1509–1528.

    Article  CAS  Google Scholar 

  11. Hollmen M, Roudnicky F, Karaman S, Detmar M . Characterization of macrophage—cancer cell crosstalk in estrogen receptor positive and triple-negative breast cancer. Sci Rep 2015; 5: 9188.

    Article  CAS  Google Scholar 

  12. Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY et al. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1alpha induces cancer progression. Neoplasia 2014; 16: 928–938.

    Article  CAS  Google Scholar 

  13. Gong W, Howard OM, Turpin JA, Grimm MC, Ueda H, Gray PW et al. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. J Biol Chem 1998; 273: 4289–4292.

    Article  CAS  Google Scholar 

  14. Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B et al. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol 2011; 12: 167–177.

    Article  CAS  Google Scholar 

  15. Gong X, Gong W, Kuhns DB, Ben-Baruch A, Howard OM, Wang JM . Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. J Biol Chem 1997; 272: 11682–11685.

    Article  CAS  Google Scholar 

  16. Rajaram M, Li J, Egeblad M, Powers RS . System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity. PLoS Genet 2013; 9: e1003789.

    Article  CAS  Google Scholar 

  17. Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 2013; 19: 6006–6019.

    Article  CAS  Google Scholar 

  18. Pitteri SJ, Kelly-Spratt KS, Gurley KE, Kennedy J, Buson TB, Chin A et al. Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 2011; 71: 5090–5100.

    Article  CAS  Google Scholar 

  19. Barbai T, Fejos Z, Puskas LG, Timar J, Raso E . The importance of microenvironment: the role of CCL8 in metastasis formation of melanoma. Oncotarget 2015; 6: 29111–29128.

    Article  Google Scholar 

  20. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14: 518–527.

    Article  CAS  Google Scholar 

  21. Gyorffy B, Surowiak P, Budczies J, Lanczky A . Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8: e82241.

    Article  Google Scholar 

  22. Fanti P, Nazareth M, Bucelli R, Mineo M, Gibbs K, Kumin M et al. Estrogen decreases chemokine levels in murine mammary tissue: implications for the regulatory role of MIP-1 alpha and MCP-1/JE in mammary tumor formation. Endocrine 2003; 22: 161–168.

    Article  CAS  Google Scholar 

  23. Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D et al. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 2007; 9: R15.

    Article  Google Scholar 

  24. Fenner J, Stacer AC, Winterroth F, Johnson TD, Luker KE, Luker GD . Macroscopic stiffness of breast tumors predicts metastasis. Sci Rep 2014; 4: 5512.

    Article  CAS  Google Scholar 

  25. Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ et al. TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 2011; 17: 6754–6765.

    Article  CAS  Google Scholar 

  26. Van Damme J, Proost P, Lenaerts JP, Opdenakker G . Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med 1992; 176: 59–65.

    Article  CAS  Google Scholar 

  27. Blaszczyk J, Coillie EV, Proost P, Damme JV, Opdenakker G, Bujacz GD et al. Complete crystal structure of monocyte chemotactic protein-2, a CC chemokine that interacts with multiple receptors. Biochemistry 2000; 39: 14075–14081.

    Article  CAS  Google Scholar 

  28. Roussos ET, Condeelis JS, Patsialou A . Chemotaxis in cancer. Nat Rev Cancer 2011; 11: 573–587.

    Article  CAS  Google Scholar 

  29. Chen J, Yao Y, Gong C, Yu F, Su S, Liu B et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011; 19: 541–555.

    Article  CAS  Google Scholar 

  30. Casey AE, Laster WR Jr, Ross GL . Sustained enhanced growth of carcinoma EO771 in C57 black mice. Proc Soc Exp Biol Med 1951; 77: 358–362.

    Article  CAS  Google Scholar 

  31. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 2011; 474: 337–342.

    Article  CAS  Google Scholar 

  32. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  33. Rafii S, Avecilla ST, Jin DK . Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell 2003; 4: 331–333.

    Article  CAS  Google Scholar 

  34. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 2005; 23: 1420–1430.

    Article  Google Scholar 

  35. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 2007; 13: 920–928.

    Article  CAS  Google Scholar 

  36. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L et al. Tumor self-seeding by circulating cancer cells. Cell 2009; 139: 1315–1326.

    Article  Google Scholar 

  37. Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 2012; 149: 1207–1220.

    Article  CAS  Google Scholar 

  38. Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs 2013; 31: 760–768.

    Article  CAS  Google Scholar 

  39. Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 2013; 71: 1041–1050.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors I Roninson, E Broude and JE Schwarzbauer for useful comments and suggestions, and F Marini for sharing the EO771 cells. This study was supported by a pilot grant 5P30GM103336-02 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Kiaris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmaki, E., Chatzistamou, I., Kaza, V. et al. A CCL8 gradient drives breast cancer cell dissemination. Oncogene 35, 6309–6318 (2016). https://doi.org/10.1038/onc.2016.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.161

This article is cited by

Search

Quick links