Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Association between single-nucleotide polymorphisms in DNA double-strand break repair genes and prostate cancer aggressiveness in the Spanish population

Abstract

Background:

Novel predictors of prognosis and treatment response for prostate cancer (PCa) are required to better individualize treatment. Single-nucleotide polymorphisms (SNPs) in four genes directly (XRCC5 (X-ray repair complementing defective repair in Chinese hamster cells 5) and XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6)) or indirectly (PARP1 and major vault protein (MVP)) involved in non-homologous end joining were examined in 494 Spanish PCa patients.

Methods:

A total of 22 SNPs were genotyped in a Biotrove OpenArray NT Cycler. Clinical tumor stage, diagnostic PSA serum levels and Gleason score at diagnosis were obtained for all participants. Genotypic and allelic frequencies were determined using the web-based environment SNPator.

Results:

(XRCC6) rs2267437 appeared as a risk factor for developing more aggressive PCa tumors. Those patients carrying the GG genotype were at higher risk of developing bigger tumors (odds ratio (OR)=2.04, 95% confidence interval (CI) 1.26–3.29, P=0.004), present higher diagnostic PSA levels (OR=2.12, 95% CI 1.19–3.78, P=0.011), higher Gleason score (OR=1.65, 95% CI 1.01–2.68, P=0.044) and D’Amico higher risk tumors (OR=2.38, 95% CI 1.24–4.58, P=0.009) than those patients carrying the CC/CG genotypes. Those patients carrying the (MVP) rs3815824 TT genotype were at higher risk of presenting higher diagnostic PSA levels (OR=4.74, 95% CI 1.40–16.07, P=0.013) than those patients carrying the CC genotype. When both SNPs were analyzed in combination, those patients carrying the risk genotypes were at higher risk of developing D’Amico higher risk tumors (OR=3.33, 95% CI 1.56–7.17, P=0.002).

Conclusions:

We believe that for the first time, genetic variants at XRCC6 and MVP genes are associated with risk of more aggressive disease, and would be taken into account when assessing the malignancy of PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fraser M, Berlin A, Bristow RG, van der Kwast T . Genomic spathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol Oncol 2015; 33: 85–94.

    Article  PubMed  Google Scholar 

  2. Khanna KK, Jackson SP . DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.

    Article  CAS  PubMed  Google Scholar 

  3. Sharpless NE, Ferguson DO, O'Hagan RC, Castrillon DH, Lee C, Farazi PA et al. Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions. Mol Cell 2001; 8: 1187–1196.

    Article  CAS  PubMed  Google Scholar 

  4. Shrivastav M, De Haro LP, Nickoloff JA . Regulation of DNA double-strand break repair pathway choice. Cell Res 2008; 18: 134–147.

    Article  CAS  PubMed  Google Scholar 

  5. Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF et al. Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC Med Genet 2014; 15: 143.

    Article  PubMed  PubMed Central  Google Scholar 

  6. West SC . Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 2003; 4: 435–445.

    Article  CAS  PubMed  Google Scholar 

  7. Strachan T, Read AP . Human Molecular Genetics. BIOS Scientific Publishers; Wiley-Liss: Oxford, New York, 1996, p xiv, 597pp.

    Google Scholar 

  8. Tseng RC, Hsieh FJ, Shih CM, Hsu HS, Chen CY, Wang YC . Lung cancer susceptibility and prognosis associated with polymorphisms in the nonhomologous end-joining pathway genes: a multiple genotype-phenotype study. Cancer 2009; 115: 2939–2948.

    Article  CAS  PubMed  Google Scholar 

  9. Bassing CH, Alt FW . The cellular response to general and programmed DNA double strand breaks. DNA Repair (Amst) 2004; 3: 781–796.

    Article  CAS  Google Scholar 

  10. Kedersha NL, Heuser JE, Chugani DC, Rome LH, Vaults, III Vault . ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol 1991; 112: 225–235.

    Article  CAS  PubMed  Google Scholar 

  11. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM et al. The drug resistance-related protein LRP is the human major vault protein. Nat Med 1995; 1: 578–582.

    Article  CAS  PubMed  Google Scholar 

  12. Shimamoto Y, Sumizawa T, Haraguchi M, Gotanda T, Jueng HC, Furukawa T et al. Direct activation of the human major vault protein gene by DNA-damaging agents. Oncol Rep 2006; 15: 645–652.

    CAS  PubMed  Google Scholar 

  13. Lara PC, Pruschy M, Zimmermann M, Henriquez-Hernandez LA . MVP and vaults: a role in the radiation response. Radiat Oncol 2011; 6: 148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung JH, Ginn-Pease ME, Eng C . Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res 2005; 65: 4108–4116.

    Article  CAS  PubMed  Google Scholar 

  15. Ryu SJ, An HJ, Oh YS, Choi HR, Ha MK, Park SC . On the role of major vault protein in the resistance of senescent human diploid fibroblasts to apoptosis. Cell Death Differ 2008; 15: 1673–1680.

    Article  CAS  PubMed  Google Scholar 

  16. Lloret M, Lara PC, Bordon E, Fontes F, Rey A, Pinar B et al. Major vault protein may affect nonhomologous end-joining repair and apoptosis through Ku70/80 and bax downregulation in cervical carcinoma tumors. Int J Radiat Oncol Biol Phys 2009; 73: 976–979.

    Article  PubMed  Google Scholar 

  17. Thomas C, Tulin AV . Poly-ADP-ribose polymerase: machinery for nuclear processes. Mol Aspects Med 2013; 34: 1124–1137.

    Article  CAS  PubMed  Google Scholar 

  18. Schultz N, Lopez E, Saleh-Gohari N, Helleday T . Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 2003; 31: 4959–4964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang M, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G . PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34: 6170–6182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J . Poly (ADP-ribose) polymerase inhibitor: an evolving paradigm in the treatment of prostate cancer. Asian J Androl 2014; 16: 401–406.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferrer M, Suarez JF, Guedea F, Fernandez P, Macias V, Marino et al. Health-related quality of life 2 years after treatment with radical prostatectomy, prostate brachytherapy, or external beam radiotherapy in patients with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2008; 72: 421–432.

    Article  PubMed  Google Scholar 

  23. Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF et al. Intraethnic variation in steroid-5-alpha-reductase polymorphismsin prostate cancer patients: a potential factor implicated in 5-alpha-reductase inhibitor treatment. J Genet 2015; 94: 335–341.

    Article  PubMed  Google Scholar 

  24. Henriquez-Hernandez LA, Valenciano A, Foro-Arnalot P, Alvarez-Cubero MJ, Cozar JM, Suarez-Novo JF et al. Polymorphisms in DNA-repair genes in a cohort of prostate cancer patients from different areas in Spain: heterogeneity between populations as a confounding factor in association studies. PLoS One 2013; 8: e69735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Epstein JI, Allsbrook WC Jr., Amin MB, Egevad LL . The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol 2005; 29: 1228–1242.

    Article  PubMed  Google Scholar 

  26. D'Amico AV, Whittington R, Malkowicz SB, Wu YH, Chen MH, Hurwitz M et al. Utilizing predictions of early prostate-specific antigen failure to optimize patient selection for adjuvant systemic therapy trials. J Clin Oncol 2000; 18: 3240–3246.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  28. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  29. Henriquez-Hernandez LA, Valenciano A, Herrera-Ramos E, Lloret M, Riveros-Perez A, Lara PC . High-throughput genotyping system as a robust and useful tool in oncology: experience from a single institution. Biologicals 2013; 41: 424–429.

    Article  CAS  PubMed  Google Scholar 

  30. Morcillo-Suarez C, Alegre J, Sangros R, Gazave E, de Cid R, Milne R et al. SNP analysis to results (SNPator): a web-based environment oriented to statistical genomics analyses upon SNP data. Bioinformatics 2008; 24: 1643–1644.

    Article  CAS  PubMed  Google Scholar 

  31. Clayton D . Population association. Balding DJ, Bishop M, Cannings C (eds). Handbook of Statistical Genetics. Wiley: Chichester, NY, 2001, pp 519–540.

    Google Scholar 

  32. Rando JC, Cabrera VM, Larruga JM, Hernandez M, Gonzalez AM, Pinto F et al. Phylogeographic patterns of mtDNA reflecting the colonization of the Canary Islands. Ann Hum Genet 1999; 63: 413–428.

    Article  CAS  PubMed  Google Scholar 

  33. Calafell F, Bertranpetit J . Principal component analysis of gene frequencies and the origin of Basques. Am J Phys Anthropol 1994; 93: 201–215.

    Article  CAS  PubMed  Google Scholar 

  34. Gomes BC, Silva SN, Azevedo AP, Manita I, Gil OM, Ferreira TC et al. The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep 2010; 24: 1079–1085.

    CAS  PubMed  Google Scholar 

  35. Rivera-Calzada A, Spagnolo L, Pearl LH, Llorca O . Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep 2007; 8: 56–62.

    Article  CAS  PubMed  Google Scholar 

  36. Jia J, Ren J, Yan D, Xiao L, Sun R . Association between the XRCC6 polymorphisms and cancer risks: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94: e283.

    Article  CAS  Google Scholar 

  37. Xu H, Zou P, Chen P, Zhao L, Zhao P, Lu A . Association between the XRCC6 Promoter rs2267437 polymorphism and cancer risk: evidence based on the current literature. Genet Test Mol Biomarkers 2013; 17: 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayden PJ, Tewari P, Morris DW, Staines A, Crowley D, Nieters et al. Variation in DNA repair genes XRCC3, XRCC4, XRCC5 and susceptibility to myeloma. Hum Mol Genet 2007; 16: 3117–3127.

    Article  CAS  PubMed  Google Scholar 

  39. Cibeira MT, de Larrea CF, Navarro A, Diaz T, Fuster D, Tovar N et al. Impact on response and survival of DNA repair single nucleotide polymorphisms in relapsed or refractory multiple myeloma patients treated with thalidomide. Leuk Res 2011; 35: 1178–1183.

    Article  CAS  PubMed  Google Scholar 

  40. Adel Fahmideh M, Schwartzbaum J, Frumento P, Feychting M . Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. Neuro Oncol 2014; 16: 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu Y, Zhou M, Li K, Zhang K, Kong X, Zheng Y et al. Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: a meta-analysis. Tumour Biol 2014; 35: 1715–1725.

    Article  CAS  PubMed  Google Scholar 

  42. Balan S, Radhab SK, Sathyan S, Vijai J, Banerjee M, Radhakrishnan K . Major vault protein (MVP) gene polymorphisms and drug resistance in mesial temporal lobe epilepsy with hippocampal sclerosis. Gene 2013; 526: 449–453.

    Article  CAS  PubMed  Google Scholar 

  43. Henriquez-Hernandez LA, Moreno M, Rey A, Lloret M, Lara PC . MVP expression in the prediction of clinical outcome of locally advanced oral squamous cell carcinoma patients treated with radiotherapy. Radiat Oncol 2012; 7: 147.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Henriquez-Hernandez LA, Lloret M, Pinar B, Bordon E, Rey A, Lubrano et al. BCL-2, in combination with MVP and IGF-1R expression, improves prediction of clinical outcome in complete response cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol 2011; 122: 585–589.

    Article  CAS  PubMed  Google Scholar 

  45. Lloret M, Lara PC, Bordon E, Rey A, Falcon O, Apolinario RM et al. MVP expression is related to IGF1-R in cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol 2008; 110: 304–307.

    Article  CAS  PubMed  Google Scholar 

  46. Jensen CJ, Oldfield BJ, Rubio JP . Splicing, cis genetic variation and disease. Biochem Soc Trans 2009; 37: 1311–1315.

    Article  CAS  PubMed  Google Scholar 

  47. Shastry BS . SNPs: impact on gene function and phenotype. Methods Mol Biol 2009; 578: 3–22.

    Article  CAS  PubMed  Google Scholar 

  48. Lee PH, Shatkay H . Ranking single nucleotide polymorphisms by potential deleterious effects. AMIA Annu Symp Proc 2008, 667–671.

  49. Lee PH, Shatkay H . F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 2008; 36: D820–D824.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technical support from the Immunology Department (Hospital Universitario de Gran Canaria Dr Negrín) staff: Nereida González-Quevedo and Yanira Florido-Ortega. This work was subsidized by grants from the Instituto de Salud Carlos III (Ministerio de. Economía y Competitividad from Spain), ID: PI12/01867 and PI13/00412; and Instituto Canario de Investigación del Cáncer (ICIC-GR-F-14/11). Almudena Valenciano has a grant from the Instituto Canario de Investigación del Cáncer (ICIC). The founders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L A Henríquez-Hernández.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henríquez-Hernández, L., Valenciano, A., Foro-Arnalot, P. et al. Association between single-nucleotide polymorphisms in DNA double-strand break repair genes and prostate cancer aggressiveness in the Spanish population. Prostate Cancer Prostatic Dis 19, 28–34 (2016). https://doi.org/10.1038/pcan.2015.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2015.63

Search

Quick links